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Lecture 4 - Propagation in Optical
 Fibers
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Step Index Fibers
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Definition: Fractional refractive index difference 
Δ = (n1 - n2)/n1


Typical value for silica (glass) fibers

n1 = 1.48, n2 = 1.46

Δ = .0135 ≈ 1%
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Geometrical Optics Model


  Use of total internal refraction for optical field guiding


Light rays that enter the fiber with an angle smaller than an “acceptance
 angle” θ0 will be guided by total internal reflection within the fiber when:
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Numerical Aperture


Definition: The light collecting capacity of the optical fiber is measured by
 the Numerical Aperature (NA)


NA = n0 sinθ0,max

= n1
2 − n2

2

≈ n1 2Δ  

Example: if we couple light from air into a fiber with Δ = .01 and n1 = 1.5,
 then the NA ≈ 0.2121 and θ0,max ≈  12˚


(For small Δ)


The maximum acceptable “angular
 error” when launching an optical beam
 into a fiber is consequently of the order
 of θ0,max ≈  12˚
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Modes in Step Index Fibers


Definition: Modes are light intensity profiles (patterns) that propagate down the
 fiber maintaining their transversal field shape


•  Multimode fibers can support many thousands of modes. 

•  Single mode fibers support one mode.


Gaussian first order mode
 intensity profile


Gaussian secon order
 mode intensity profile


E(x, y, z, t) = J(x, y)Cos(ω0t − β(ω 0 )z)

In order to accurately study optical
 modes, the complete Maxwell
 equations are to be solved.


Anyway, for multimode fibers, the
 following intuitive explanation can
 be given:


Each mode corresponds to a
 light beam traveling inside the
 fiber core with different angles




ECE 228A Fall 2008 Daniel J. Blumenthal
 4.6


Normalized Frequency Parameter V
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V is a design parameter
 that takes into account
 the fiber parameters (n1,
 n2 and a) and the free
 space wavelength λ0.


It can be shown that:

In order to have a Single Mode Fibers: 
V ≤ 2.405

In order to have a Multimode Fibers: 
V > 2.405


Important consequence:


Given the parameters n1, n2 and a fixed wavelength, a fiber is single mode if the
 core radius a is smaller than a given value (of the order of 10 µm at 1550 nm)
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Multimode Fibers


  Each mode will propagate in the fiber at as if it had its own index of
 refraction n. 

  The index of refraction for each mode n lies between n1 and n2 (from the

 solution of the Maxwell equations)

  Intuitive explanation: each mode has different portions of the field overlap

 with different amounts of the core and cladding

  Consequence: each mode will travel along the fiber at slightly different

 speeds, giving rise to multimode fiber dispersion


N =
V2

2
For large V, the number of modes
 propagating in a multimode fiber is
 approximately


Example: A multimode fiber with core diameter 2a=50µm, Δ=5x10-3 and
 λ=1.3µm supports about 160 modes
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Multimode Fiber Dispersion


Since each mode travels at a different velocity on the fiber, an
 optical bit launched into the fiber will distort as it propagates.
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•  The resulting distortion is actually a
 pulse broadening

•  The amount of pulse broadening in a
 multimode fiber is given by:


δT =
Ln1
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Bit Rate Limit for Multimode Fibers


  When dealing with digital transmission, each pulse represent a bit

  A pulse spreading leads to intersymbol interference (ISI)

  Let’s assume a bit cannot spread by more than half the allocated bit period in order

 to have an acceptable ISI level


ΔT < 1
2B

L
c
n1
2

n2
Δ <

1
2B

BL <
n2c
2n1

2Δ

We can define the Bandwidth-Distance product (BL) for multimode fibers as:


TB = 1/B
 TB = 1/B
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Bit Rate Limit for Multimode Fibers

  The previous formula give rise to the ultimate bit-rate limitation of a

 standard multimode fiber
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Δ = 0.01

n1 = 1.5


On a standard 1-km long
 step-index multimode
 fiber, the resulting
 maximum bit rate is 1
 Mbit/s only !!
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Graded index fibers


  The multimode dispersion limit can be drastically changed by using a
 proper index of refraction profile
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Dispersion limit for graded index fibers

G

b/
s 

  The limit for graded
 index fibers is of the
 order of (for example)
 1 Gbit/s at 2 Km


  With particular
 techniques (misplaced
 launch) this limit can
 be somehow increased


  Anyway, high bit rates
 and long haul link are
 NOT feasible on
 multimode fibers, even
 using graded index
 profiles
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Multimode vs. single mode fiber


  Multimode fiber

  They have a limit in terms of

 maximum bit rate of the order of
 1Gbit/1Km, due to multimode
 dispersion


  They have a relatively large core

  Splicing is easier

  Connectors are less expensive


  Installation is simpler

  They are intrinsically more resilient

 to mechanical and environmental
 stress


  They are thus mostly used in LAN
 application


  Single mode fibers

  We will see that they are not affected

 by multimode dispersion, and their
 bandwidth limit is extremely higher


  They have a small core

  Splicing is more difficult

  Connectors are more expensive


  Installation is more difficult


  They are thus used in all applications
 where the distance to be covered is
 significantly higher than 1Km


  In the rest of the course, we will
 mostly focus on single mode fibers
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Step Index Circular Waveguide

(lossless, isotropic)


• Simplest type of fiber

• (Most fiber these days is far
 more complex)

• Cylindrical symmetry
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Step Index Circular Waveguide

(lossless, isotropic)


• Simplest type of fiber

• (Most fiber these days is far
 more complex)

• Cylindrical symmetry

• Express Laplacian operator
 in cylindrical coordinates


Separate variables
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Separable Solutions
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Separable Solutions
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J  Bessel function of the first kind

Y Bessel function of the second kind

I  Modified Bessel function of the first kind

K Modified Bessel function of the second kind
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Bessel Functions


  For equations of the form


x2 d
2y
dx2

+ x dy
dx

+ x2 −α2( ) y = 0

  and non-negative integer α,  the
 solution that represents a propagating
 mode confined within the core is the
 Bessel function of the first kind Ja(x)
 and is finite at x = 0. 

  and negative integer α, the modified
 Bessel function of the second kind is
 a decaying exponential that represents
 the evanescent field of the
 propagating mode in the cladding.


Bessel Function of the first kind


Modified Bessel Function of the second kind
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Boundary Conditions


Decaying fields for r>a

q>0


For fields in the core r<a, we need finite fields

(which eliminates Y and K which go to infinity as r approaches 0.
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Boundary Conditions


  In order for the mode to be supported, it must be a standing wave pattern
 along r inside the core and a decaying exponential along r inside the
 cladding, with the boundary conditions supported at the step interface.


  β  is therefore bounded by


n1k0 ≤ β ≤ n2k0


