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Lecture 6 - Propagation in Optical
 Fibers and Dispersion
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Reading and Homework


  Read Chapter 2 of Agrawal

  HW #3 due Thursday Oct. 25

  Agrawal


  Problem 2.13

  Problem 2.14

  Problem 2.17

  Problem 2.18

  Problem 2.19

  Problem 2.20


  Reminder �HW #2 due Thursday Oct. 18
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Non-Linear Schrodinger Equation


  A(z,t) is the complex-envelope of the optical field

  The resulting optical power is P(z,t)=| A(z,t) |2 
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  Both linear (dispersive) and nonlinear effects must be taken into account for pulse
 propagation in the fiber


  The propagation of a signal in a single mode fiber is set (to a very high level of
 accuracy) by the following equation, called the nonlinear Schrodinger equation:
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Pulse Broadening


Assuming a Gaussian shaped input pulse and first order dispersion dominates (β2 ≠0)
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➥    Define Dispersion Length

➥    An unchirped pulse (C=0) will broaden by a factor of √ 2 at z = LD
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Pulse Compression

If β2C < 0, the pulse will initially decrease!

This will happen if the 


(a)  the initial pulse is positively chirped and propagates in the anomolous
 dispersion regime of the fiber OR 


(b)  if the pulse is initially negatively chirped and propagates in the normal
 dispersion regime of the fiber
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Chromatic Dispersion

  The two terms β2 and β3 of the previous equation are the derivative of the “mode

 propagation constant” β(ω)

  The meaning of β(ω) is clear when considering a single pulse propagation


➯  It turns out that, considering  the dispersion term only 

➯  The phase velocity (νp) is the velocity of the center frequency ω0, 

➯   The group velocity (νg) is the velocity of the center of the pulse. It is the
 value that determine the practical “velocity” of the transmission of the
 information (energy) in the fiber 
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Group Delay


  The group delay effective index ng is approx. of the same order of the
 index of refraction of the fiber, i.e. , ng =1.5


  As an example, the (group) delay of 100 Km of fiber is given by:
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Group Velocity Dispersion (GVD)

  Group velocity (GVD) is frequency-dependent

  Any communication signal (pulse) has a given bandwidth


  Different frequencies in pulse => Different group delays => Leads to pulse distortion

  A more quantitative analysis can be carried out by considering that the fiber acts as a filter

 with the following transfer function:


  This equation is obtained after some mathematical manipulation that “extracts” the absolute
 group delay


  The coefficient β2 and β3 are evaluated on the pulse central frequency/wavelength ω0
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Group Velocity Dispersion (GVD)

  The previous equation can be exactly solved in some particular cases, among

 which the most important one is the propagation of a Gaussian pulse


  The Gaussian pulse is broadened after propagation of distance L by the
 amount:


  where Δω is the spectrum occupied by the pulse

  ανδ β2 is the dispersion (material and waveguide) of the fiber
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Refractive Index of Silica Fibers

  The index of refraction of bulk silica can be approximated using the

 Sellmeir equation with experimentally measured parameters.
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A1 = 0.401040;

λ1 = 0.064270;

A2 = 0.521885;

λ2 = 0.129408;

A3 = 0.904048;

λ3 = 9.425478;
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  The material refractive index
 wavlength dependance impacts the
 dispersion parameter :


  The material “zero dispersion
 wavelength” is typically 1350 nm


Material Dispersion Parameter
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Group-Velocity Dispersion

  The index of the mode is dependent on the wavelength (i.e. the fiber is dispersive).

  Two components: material dispersion and waveguide dispersion.

  These contribute to phase index.

  The group index is given by 
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Dispersion parameters: β2 and D

  β2 is called the “group velocity dispersion” GVD parameter


  It is expressed in units of ps2/km

  From a mathematical point of view, it is easier to handle equations dealing

 with β2 and optical frequency

  It is also convenient to specify dispersion in terms of optical wavelength

  The “D” parameter is


  D is called the “Dispersion parameter”, and it is expressed in units of ps
/nm-km
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The Dispersion Parameter D


  The relation between the two parameters is given by:


  Physical meaning: given two wavelengths separated by Δλ, their different
 group velocities give rise to a (group) delay between the two components
 given by


  The gaussian pulse spread, in terms of D, is given by:



where Δλ is the spectral width of the gaussian pulse


D = –2πC/λ2  β2 [ps/nm-km]


λΔ=Δ DLT

Δdelay=D L Δλ
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Frequency Dependance of Dispersion


  The frequency dependence of β(ω) is determined by the following physical
 effects:

 Material dispersion


 The index of refraction of the bulk material depends on frequency

 Waveguide dispersion


 Even for an ideal material with constant index of refraction, the solution of
 the Maxwell equation for a single mode propagating into a fiber gives a
 frequency-dependent β(ω) 


 This waveguide effects depends on the profile of the index of refraction of
 the fiber


  The actual β(ω) is thus a combination of the two effects
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General Dispersion Formula 


  This formula can be used to derive dispersion limits in several different
 transmission scenarios 


➥    If we take into account more realistic source and fiber effects †

➥    we include β3

➥ source with a generic spectral width σω
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†D. Marcuse, Applied Optics, Vol. 19, p. 1653, 1980 and Vol. 20, p. 3573, 1981.


Where V = 2σ0σω 



