Lecture 7 - Dispersion and Chirp

ECE 228A Fall 2008 Daniel J. Blumenthal

General Dispersion Formula

If we take into account more realistic source and fiber effects [†]
we include β₃

 \blacktriangleright source with a generic spectral width σ_{ω}

$$\frac{\sigma(z)}{\sigma_0} = \left[\left(1 + \frac{C\beta_2 z}{2\sigma_0^2} \right)^2 + \left(1 + V^2 \right) \left(\frac{\beta_2 z}{2\sigma_0^2} \right)^2 + \left(1 + C^2 + V^2 \right)^2 \frac{1}{2} \left(\frac{\beta_3 z}{4\sigma_0^3} \right)^2 \right]^{\frac{1}{2}}$$

Where $V = 2\sigma_0 \sigma_\omega$

⇒ This formula can be used to derive dispersion limits in several different transmission scenarios

[†]D. Marcuse, Applied Optics, Vol. 19, p. 1653, 1980 and Vol. 20, p. 3573, 1981.

ECE 228A Fall 2008 Daniel J. Blumenthal

Dispersion Limits

- ⇒ First solution: use a single frequency laser, then spectral width is 0.1 nm and the limit is 167 Gbps km.
- ⇒ Second solution: Use dispersion shifted fiber, so D~1 ps/nm km. This was done in Japan. Then, the limit is 2500 Gbps km

$$L < \frac{1}{4 \bullet 0.1 nm \bullet 1 ps / nm / kmB} = \frac{8.3 GHz \bullet km}{B}$$

 \Rightarrow Third solution: Use external modulators. Then

$$\sigma = 0.4B/17GHz / nm$$
$$L < \frac{17GHz / nm}{4 \cdot 0.4 \cdot 1 ps / nm / kmB^2}$$

Note: Nonlinearity and four wave mixing are big problems in fibers with low dispersion

Large Source Spectral Width (e.g., LED)

Assume V >> 1, C = 0 and $\beta_3 = 0$, define the pulse broadening factor σ_D

$$\sigma = \left(\sigma_0^2 + \sigma_D^2\right)^{\frac{1}{2}}$$

$$\sigma_D = |\beta_2| L \sigma_\omega = |D| L \sigma_\lambda$$

- Assume that the bit slot is T_B for a bit rate B
- \rightarrow Assume that the pulse width at the receiver must not be greater than 1/4 of T_B
- Assume that the initial pulse width is much smaller than the final pulse width ($\sigma \approx \sigma_D$)

$$BL \le \frac{1}{4|D|\sigma_{\lambda}}$$

Large Source Spectral Width (e.g., LED) at the zero dispersion point (SMF at 1300 nm)

Assume that D = 0 and $\sigma \approx \sigma_D$

$$BL \le \frac{1}{|S|\sigma_{\lambda}^2 \sqrt{8}}$$

⇒ Relation between maximum achievable distance and bit-rate

In these systems, the maximum dispersion-limited distance is inversely proportional to the bit rate

 $L_{\rm max} \propto \frac{1}{B}$

Small Source Spectral Width (e.g., DFB laser +external modulation)

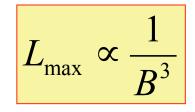
- Assume V << 1, C = 0 and $\beta_3 = 0$, and that $\sigma_0 = \sigma_D = (\beta_2 L/2)^{1/2}$
- Assume that the pulse width at the receiver must not be greater than 1/4 of T_B

$$\sigma = \left(\left| \beta_2 \right| L \right)^{\frac{1}{2}}$$

$$B^2 L \le \frac{1}{16|\beta_2|}$$

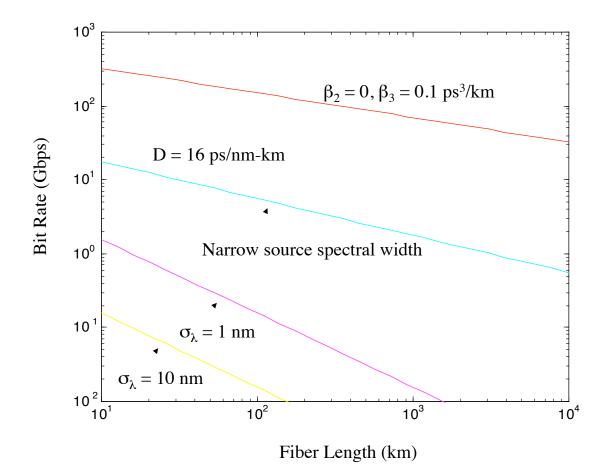
$$L_{\rm max} \propto \frac{1}{B^2}$$

In these systems, the maximum dispersionlimited distance is inversely proportional to the <u>square</u> of the bit rate


[†]G. P. Agrawal, Fiber-Optic Communication Systems, Wiley Series in Microwave and Optical Engineering, 1992

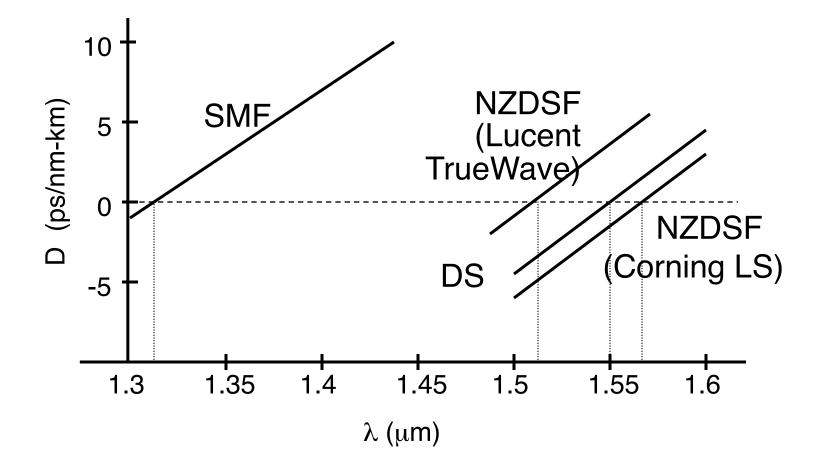
ECE 228A Fall 2008 Daniel J. Blumenthal

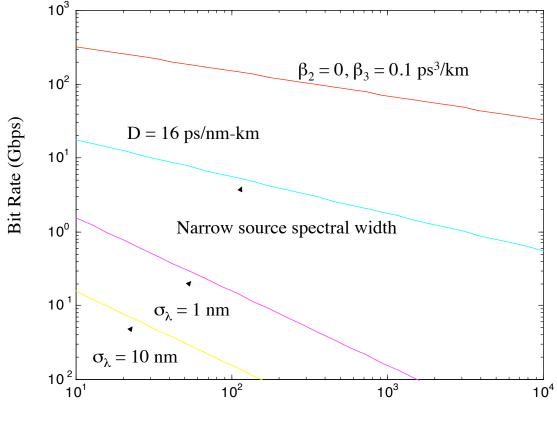
Small Source Spectral Width (e.g., DFB laser +external modulation) at the <u>zero dispersion point</u>


- Assume V << 1, C =0 and $\beta_2 = 0$, and that $\sigma_0 = (\beta_3 L/4)^{1/3}$ [†]
- Assume that the pulse width at the receiver must not be greater than 1/4 of T_B

$$\sigma = \left(\frac{3}{2}\right)^{\frac{1}{2}} \left(\left|\beta_{3}\right|L/4\right)^{\frac{1}{3}}$$
$$B^{3}L \leq \frac{\left(0.324\right)^{3}}{\left|\beta_{3}\right|}$$

In these systems, the maximum dispersionlimited distance is inversely proportional to the <u>third power</u> of the bit rate

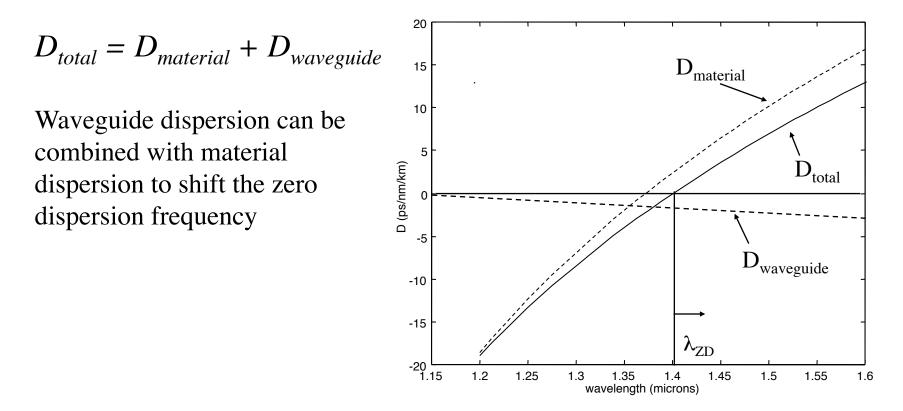

[†]G. P. Agrawal, Fiber-Optic Communication Systems, Wiley Series in Microwave and Optical Engineering, 1992



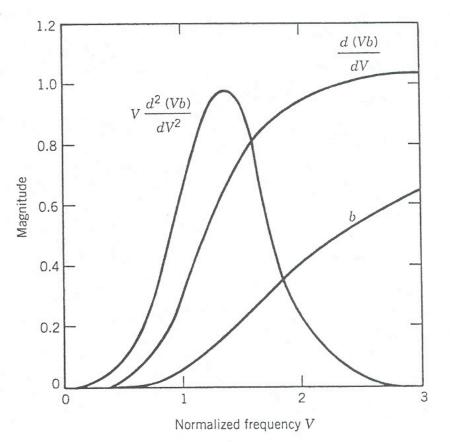
For standard SMF fibers, the limit at 10 Gbit/ is of the order of 100 km (400 km at 2.5 Gb/s)

Note that the limit at the zero dispersion points are extremely high. Unfortunately they cannot be reached due to other effects (fiber nonlinearity)

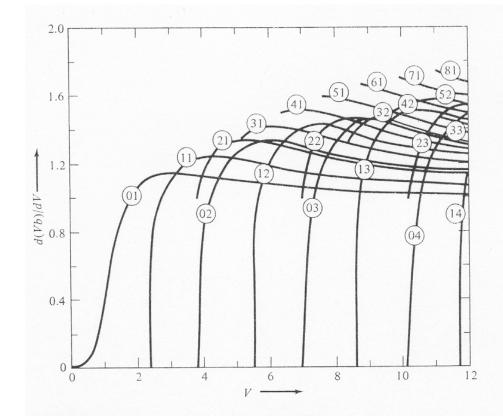
Commercial Fibers



Fiber Length (km)


Total Fiber Dispersion

> The waveguide geometry and design also introduces dispersion called "waveguide dispersion" which can be in the opposite sign as the material dispersion



Waveguide Dispersion

- ⇒ Waveguide dispersion D_W comes from the first and second derivatives of (Vb) with respect to V
- \Rightarrow For the wavelength range considered, D_W is always negative.
- Therefore, sum of waveguide and material dispersion shifts zero-dispersion wavelengt to a slightly longer wavelength

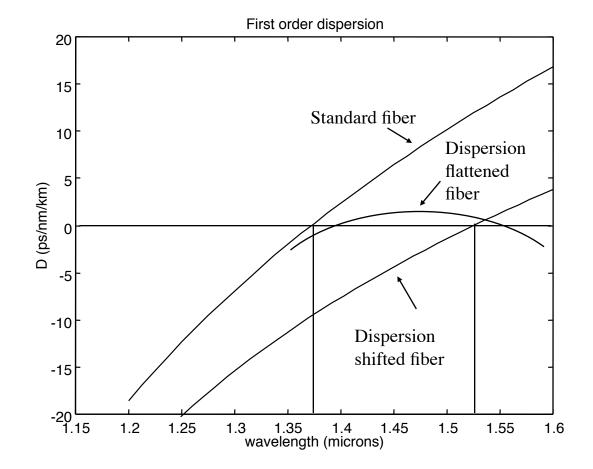
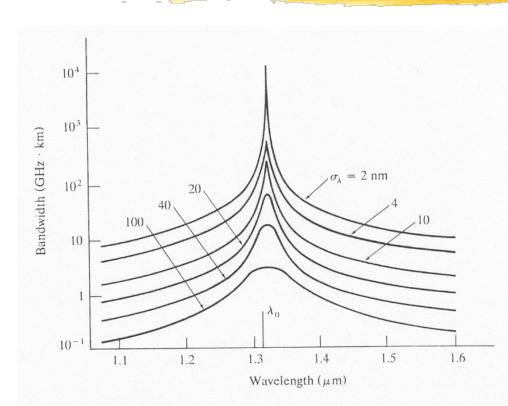

Waveguide dispersion

FIGURE 3-14

The group delay arising from waveguide dispersion as a function of the V number for a step-index optical fiber. The curve numbers jm designate the LP_{jm} modes. (Reproduced with permission from Gloge.³⁷)

Dispersion Shifted and Flattened Fibers



Fiber-Optic Communication Systems

Fiber Type and D (C band) Aeff $\lambda_{\rm ZD}$ Slope S (μm^2) Trade Name [ps/(km-nm)] $[ps/(km-nm^2)]$ (nm)Corning SMF-28 80 1302 - 132216 to 19 0.090 Lucent AllWave 80 1300-1322 17 to 20 0.088 Alcatel ColorLock 80 1300 - 132016 to 19 0.090 Corning Vascade 101 1300-1310 18 to 20 0.060 Lucent TrueWave-RS 50 1470-1490 2.6 to 60.050 Corning LEAF 72 1490-1500 2 to 60.060 Lucent TrueWave-XL 72 1570 - 1580-1.4 to -4.60.112 Alcatel TeraLight 65 1440 - 14505.5 to 10 0.058

Table 2.1 Characteristics of several commercial fibers

Bandwidth Distance Product: Motivation for 1310nm Transmission

FIGURE 3-26

Examples of bandwidth versus wavelength for different source spectral widths σ_{λ} in a single-mode fiber having a dispersion minimum at 1300 nm. (Reproduced with permission from Reed, Cohen, and Shang,⁵⁶ © 1987, AT & T.)

Higher Order Dispersion

If the wavelength is chosen such that D=0 or $\beta_2=0$, there is still dispersion described by the higher order dispersion terms S or β_3

S –	$\left(\frac{2\pi c}{2\pi c}\right)^2 \beta$	
5 =	$\left(\frac{\lambda^2}{\lambda^2} \right)$	p_3

$$\beta_3 = \frac{d\beta_2}{d\omega}$$

The S parameters is relevant mostly for systems:

- Working close to a zero first order dispersion
- Using WDM (i.e. multiple wavelength)

Example:

A typical value of S for standard fiber at zero dispersion wavelength is $S=0.085 \text{ ps/km}-nm^2$. For dispersion-shifted fiber with $\lambda_{ZD}=1.55 \mu m$, a typical value of S is $S=0.05 \text{ ps/km}-nm^2$.