Capacity and Repeater Spacing

Optical Network Evolution

Reconfigurable WDM Optical Nets

⇒ Has increased the functionality and role of optics in the routing and switching at the wavelength circuit level .

Evolution of Fiber-Optic Networks

	Point-to-point fiber links connected to electronic switching equipment	 High performance data communications. Serial HIPPI standard introduced, fiber at 1.2 Gbps. Fiber Channel standard introduced at 200, 400 and 800 Mbps. Mid to Late 90s 		Introduction of Optical Channel (OC) layer by the ITU. Routing in the optical layer.		Optical wavelength conversion. Optical regeneration. Optical packet switching. Late 00s
	Late 80s First MANs. 100 Mbps FDDI and 200 Mbps ESCON for data communications. SONET and SDH for Telecommunications.		Layered Networking. ATM and IP over SONET.	Late 90s Fixed wavelength add/drop multiplexing. Protection and survivability in the optical layer.	Early to late 200 Reconfigurable WDM add/drop multiplexers. Optical crossconnects	0
← 1st Generation				← 2nd Ge	eneration	◄3rd Generation

Commercially and Research Deployed Optical Network Status

- National networks with long haul links being deployed with fixed wavelength add/drop (2nd Generation)
- Regional networks being deployed with photonic switches (3rd Generation).
- Experimental and research networks with photonic switches deployed (3rd Generation): National Lambda Rail (NLR), GENI (NSF)
- Metropolitan area networks with reconfigurable add/drop and photonic switches are in progress

100G ULH DWDM Transport

Modulation Techniques

- ⇒ Polarization-Multiplexed QPSK with Coherent Detection
 - ⇒ 4 bits per modulation symbol resulting in very good spectral efficiency
 - ⇒ Excellent chromatic dispersion and PMD tolerance using electrical equalization
 - ⇒ High tolerance to narrow band filtering; compatible with 50 GHz grid
 - ⇒ Constant-envelope format minimizes non-linear effects in neighboring channels
 - ⇒ More sensitive to non-linear cross-phase modulation than DQPSK
 - ⇒ Needs improvement in FEC coding gain to reach current 40 Gb/s reach
 - \Rightarrow Under development by NSN, ALU, and others
- Other modulation techniques being evaluated include DQPSK, several QAM formats, PolMux DQPSK, inverse multiplexing techniques using multiple wavelengths or OFDM
 - Currently these techniques don't achieve the performance anticipated with PolMux QPSK

Verizon 100-Gb/s Trials

- ⇒ 107 Gb/s DQPSK Trial with Alcatel-Lucent
 - LambdaXtreme Network between Tampa and Miami
 - ⇒ Real-time video traffic over 500 km link with 6dB margin
 - ⇒ Uses asymmetic interleaver with 65 GHz passband on 50 GHz grid
- ⇒ 111 Gb/s Coherent PolMux QPSK with Nokia-Siemens
 - ⇒ Field fiber route consisting of thirteen 80 km spans, EDFA only
 - ⇒ Standard 50 GHz spacing
 - ⇒ Off-line digital processing using data stored on storage scope
 - ⇒ Examined impact of neighboring channels and PMD
- ⇒ 100 Gb/s Coherent PolMux QPSK with Nortel
 - Standard 50 GHz grid but uses 2 PolMux QPSK wavelengths in the pass band, uses real-time processing
 - ⇒ Examines impact of neighboring channels and high PMD

Optical Transport Network

ECE 228A Winter 2011 Daniel J. Blumenthal

OTN Evolution


```
verizon
```

- Present Mode of Operation
 - Separate DWDM and SONET network elements
 - DWDM supports only ring and linear configurations
 - EN switches used for data aggregation/grooming
- Future Mode of Operation
 - ADM-on-wavelength and integrated fabric allow TDM and DVVDM functionality to be combined
 - SONET rings over optical mesh
 - Wavelength switching enables mesh
 - Native Ethernet capability

ECE 228A Winter 2011 Daniel J. Blumenthal

25

FTTP Video Architecture

ECE 228A Winter 2011 Daniel J. Blumenthal

1.2 Basic Fiber Optic Link and Multiplexing and Modulation Techniques

Basic Communication System

Block Coding •Error Correction •Redundancy •Overcome noise and transmission impairments •E.g. FEC, Turbo-Codes

Line Coding •DC balance •Redundancy •E.g Manchester Codes

ECE 228A Winter 2011 Daniel J. Blumenthal

Basic fiber point-to-point link

Multiplexing Techniques

- Multiplexing is the technique used to carry several different information channels on a common physical medium. The four alternatives are:
 - ⇒ Time Division Multiplexing (TDM)
 - ⇒ Frequency Division Multiplexing, indicated as "Wavelength Division Multiplexing" (WDM) in optics
 - ⇒ Space Division Multiplexing (SDM)
 - \Rightarrow Code Division Multiplexing (CDMA)
 - ⇒ Multilevel coding