Lecture 5 - Propagation 1n Optical
Fibers and Dispersion
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Boundary Conditions

Decaying fields for r>a
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Figure 3-1 Structure and index profile of a step-index circular waveguide.

For fields in the core r<a, we need finite fields
(which eliminates Y and K which go to infinity as r approaches 0.
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Boundary Conditions

In order for the mode to be supported, it must be a standing wave pattern
along r inside the core and a decaying exponential along r inside the
cladding, with the boundary conditions supported at the step interface.

B is therefore bounded by
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TE 1=0 Modes
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Figure 3-2 Graphical determination of the propagation constants of TE modes (/

step-index waveguide.
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I=1 (not TE or TM, but EH)

‘Flgure 3-3 Graphical determination of the propagation constants of / = 1 EH modes for a

step-index fiber.
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Figure 3-4 Graphical determination of the propagation constants of the / = 1 HE modes for
a step-index dielectric waveguide.

ECE 228A Winter 2011 Daniel J.
Blumenthal

5.6



V parameter
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Figure 3-5 Normalized propagation constant as a function of V parameter for a few of the
lowest-order modes of a step-index waveguide [4].
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For nl-n2<<nl, LP approximation 1s valid.
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Figure 3-6 Normalized propagation constant b as function of normalized frequency V for the
guided modes of the optical fiber, b = (B/k, — ny)/(n, — n,). (After Reference [51)

Single mode cut off: V=2.405
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Figure 3-8 Sketch of the fiber cross section and the four possible distributions of LRy

(d)
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Modes as a function of V parameter
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Figure 3-9 Fractional power contained in the cladding as a function of the frequency param-
eter V. (After Reference [5].)

At cutoft, all the power 1s in the cladding.
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Dispersion 1n Single Mode Fibers

Modal dispersion in multimode fibers is not present in single mode fiber
(SMF)
However, other types of dispersion are present in SMF

Material dispersion

Waveguide dispersion

Polarization mode dispersion
The first two effects fall under the term “Chromatic Dispersion”
The third effect is known as PMD

Dispersion can set the ultimate bit-rate limit in single mode fiber when loss
and fiber nonlinearities are not dominant
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Gaussian Pulses
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Optical Power Spectrum
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=> Define rms pulsewidth and bandwidth values:
= 0,=T,,/V2 (rms pulse width)
= 0, =Aw, /2 (rms spectral width)

=> Define linear chirp factor
= C

=> Define relation between pulse width and
bandwidth
= Aw,,, = (1 + C)2IT,
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Non-Linear Schrodinger Equation

Both linear (dispersive) and nonlinear effects must be taken into account for pulse
propagation in the fiber

The propagation of a signal in a single mode fiber is set (to a very high level of
accuracy) by the following equation, called the nonlinear Schrodinger equation:
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Attenuation Chromatic Nonlinear
Dispersion Effects

A(z,t) 1s the complex-envelope of the optical field

The resulting optical power is P(z,t)=/ A(z,t) /?
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