ECE228B

Fiber Optic Components and Systems Homework \#1

Problem 1:

Consider a semiconductor material exposed to an impulse of light at $\mathrm{t}=0$ that generates N electron-hole pairs between 0 and w as shown below, with electron and hole velocities v_{e} and v_{h}.

Show that the hole and electron currents and total current can be written as follows:

$$
\begin{gathered}
i_{h}(t)=\left\{\begin{array}{c}
-\frac{N q v_{h}^{2}}{w^{2}} t+\frac{N q v_{h}}{w}, 0 \leq t \leq \frac{w}{v_{h}} \\
0, \text { elsewhere }
\end{array}\right. \\
i_{e}(t)=\left\{\begin{array}{c}
-\frac{N q v_{e}^{2}}{w^{2}} t+\frac{N q v_{e}}{w}, 0 \leq t \leq \frac{w}{v_{e}} \\
0, \text { elsewhere }
\end{array}\right. \\
i_{\text {total }}(t)=\left\{\begin{array}{c}
\frac{N q}{w}\left[\left(v_{h}+v_{e}\right)-\frac{1}{w}\left(v_{h}^{2}+v_{e}^{2}\right) t\right], 0 \leq t \leq \frac{w}{v_{e}} \\
\frac{N q v_{h}}{w}\left[1-\frac{v_{h}}{w} t\right], \frac{w}{v_{e}} \leq t \leq \frac{w}{v_{h}}
\end{array}\right.
\end{gathered}
$$

Problem 2:

A p-i-n photodiode is able to convert a pulse of light with 8×10^{12} photons into 3×10^{12} electrons that contribute to the output photocurrent. Calculate the quantum efficiency η and the responsivity R at $\lambda_{0}=0.83 \mu \mathrm{~m}, 1.3 \mu \mathrm{~m}$ and $1.55 \mu \mathrm{~m}$. Now assume that the photodiode is composed of $\mathrm{In}_{0.70} \mathrm{Ga}_{0.30} \mathrm{As}_{0.64} \mathrm{P}_{0.36}$ and that the intrinsic region perpendicular to the incident photons is $1 \mu \mathrm{~m}$ thick. Use the Figure in your class notes for absorption as a function of wavelength for different material systems/compositions to estimate the quantum efficiency and responsivity at $\lambda_{0}=1.3 \mathrm{~mm}$.

Problem 3:

A silicon p-i-n photodiode operating with 0 dBm input at $0.8 \mu \mathrm{~m}$ has 20 MHz bandwidth, 65% quantum efficiency, 1 nA dark current and 8 pf junction capacitance.
(a) Determine the RMS current noise due to shot noise.
(b) Determine the SNR due to shot noise.
(c) If we require and SNR of 20 dB , calculate the minimum received optical power when shot noise is the only noise source.

Problem 4:

An InGaAsP-InP FP laser has an optical cavity length of $350 \mu \mathrm{~m}$, and a gain medium with peak gain coefficient that can be approximated by the linear relation

$$
g_{p} \approx \alpha\left(\frac{\Delta n}{\Delta n_{T}}-1\right)
$$

Assume the injected carrier concentration for transparency $\Delta \mathrm{n}_{\mathrm{T}} \approx 1.75{\mathrm{X} 10^{18} \mathrm{~cm}^{-3} \text { and the }}^{2}$ semiconductor absorption in the absence of current injection $\alpha=600 \mathrm{~cm}^{-1}$, a FWHM gain bandwidth of approximately 5 nm and a mode refractive index of $\mathrm{n}_{\text {eff }}=4$.
(A) Plot the peak gain coefficient as a function of the injected carrier concentration $(\Delta \mathrm{n})$ from $\Delta \mathrm{n}=0$ to $\Delta \mathrm{n}=10 \Delta \mathrm{n}_{\mathrm{T}}$.
(B) Calculate the separation between mode of the cavity, the number of modes that oscillate in the cavity and the mode integer M of the peak radiation.

Problem 5:

Consider a DFB laser with a $400 \mu \mathrm{~m}$ long grating, an effective mode index 3.5 and a grating corrugation period $0.22 \mu \mathrm{~m}$. Calculate the symmetric modes (wavelengths) that the laser will operate at assuming no $\lambda / 4$ phase shift in the grating. What will be the output wavelength if the grating is fabricated with a $\lambda / 4$ phase shift in the grating?

Problem 6:

Calculate and plot the wavelength shift vs. tuning current for a tunable Bragg reflector that operates based on the free-carrier plasma effect. Assume $\lambda_{\mathrm{g}}=1300 \mathrm{~nm}$ InGaAsP tuning region operated at $1500 \mathrm{~nm}, \beta_{\mathrm{pl}}=-1.3 \times 10^{-20} \mathrm{~cm}^{3}$, active region with $\mathrm{L}=400 \mu \mathrm{~m}, \mathrm{~d}=0.3 \mu \mathrm{~m}, \mathrm{w}=2 \mu \mathrm{~m}$ and confinement factor $\Gamma_{t}=0.3$. For the material assume an infinite spontaneous recombination time constant, bimolecular recombination constant $B=10^{-10} \mathrm{~cm}^{3} / \mathrm{s}$ and Auger recombination constant $\mathrm{C}=3 \times 10^{-29} \mathrm{~cm}^{6} / \mathrm{s}$.

Problem 7:

For a mode-locked laser, assume the envelopes are given by the expression below and that the phases are equal. v_{m} is the frequency spacing of mode m, where $\mathrm{m}=0$ coincides with the central frequency of the atomic lineshape. Determine expressions for the mean power, peak power and pulse width (defined at the full-width half-maximum FWHM).

$$
A_{q}=\sqrt{P} \frac{(\Delta v / 2)^{2}}{\left(m v_{m}\right)^{2}+(\Delta v / 2)^{2}}, \mathrm{~m}=-\infty, \ldots,+\infty
$$

