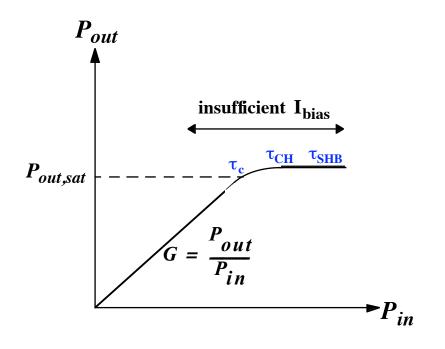
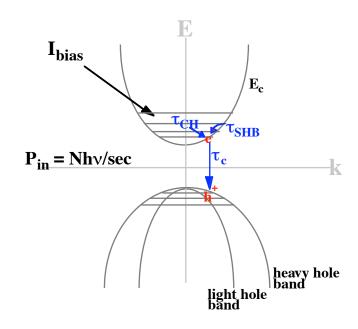

Lecture 10: Semiconductor Optical Amplifiers

Semiconductor Optical Amplifiers

- ⇒ Active waveguides fabricated in semiconductor waveguides
- ⇒ Gain usually achieved by electronic current injection
- Can be integrated with other device structures
- ⇒ Gain is related to SC bandgap (1.55 and 1.3 micron wavebands)
- ⇒ Relatively broad bandwidth (30 100nm)
- ⇒ Fast carrier dynamics (can be advantage or disadvantage)
- ⇒ Polarization dependence is an important issues as is linear vs. non-linear operation

Semiconductor Optical Amplifiers (SOAs)


- ⇒ SOA is an SC laser without mirrors
- → Optical signal experiences gain while traveling once through device
- ⇒ State-of-the-art amplifiers are polarization insensitive
- ⇒ Can be used for a variety of purposes including
 - ⇒ Post, in-line or preamplifiers
 - → Multiwavelength amplifiers when gain clamping is used
 - ⇒ Optical wavelength converter
 - Optical modulator
 - ⇒ Gating element in an optical switch



SOA Classes

Non-Lasing Gain Clamped Anti-ref lection coatings grating DFB Ш DBR tilted facet amplified signal main lasing mode amplified signal optical optical output output power **ASE** power **ASE** wavelength wavelength

Linear and Non-Linear Gain

$$\tau_c > \tau_{CH} > \tau_{SHB}$$
$$\tau_c = 200 \text{ ps}$$
$$\tau_{CH} = 650 \text{ fs}$$
$$\tau_{SHB} = 50 \text{ fs}$$

SOA as an amplifier

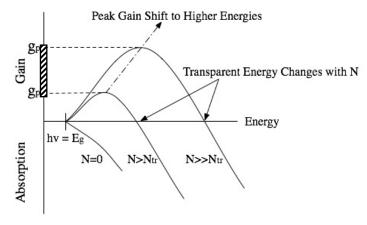
- ⇒ Linear amplification only to avoid pattern effects (described later in this lecture)
- ⇒ SOAs have high gain, so making a linear amplifier is quite difficult, there are several approaches that are used
 - ⇒ Physically tapered structure to reduce the intensity as the power increases
 - ⇒ Use a very fast carrier lifetime material like a quantum dot SOA
- ⇒ In the end, in this regime we want to avoid the amplifier being saturated anywhere inside the amplifier

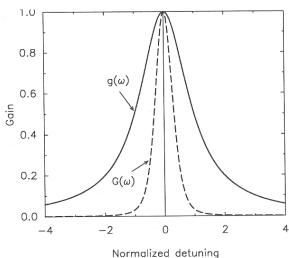
Time Averaged Gain

⇒ For an unsaturated amplifier

$$g(\omega) = \frac{g_0}{1 + (\omega - \omega_0)^2 T_2^2 + P/P_S}$$

⇒ Can be approximated by

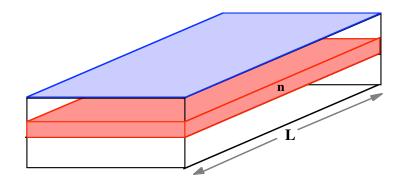

$$g(\omega) = \frac{g_0}{1 + (\omega - \omega_0)^2 T_2^2}$$

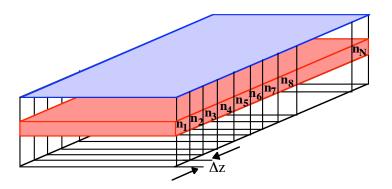

⇒ We can define the amplifier material bandwidth as

$$\Delta v_g = \frac{1}{\pi T_2}$$

And the amplifier bandwidth using $G(\omega) = \exp[g(\omega)L]$ over the length L (treating as lumped)

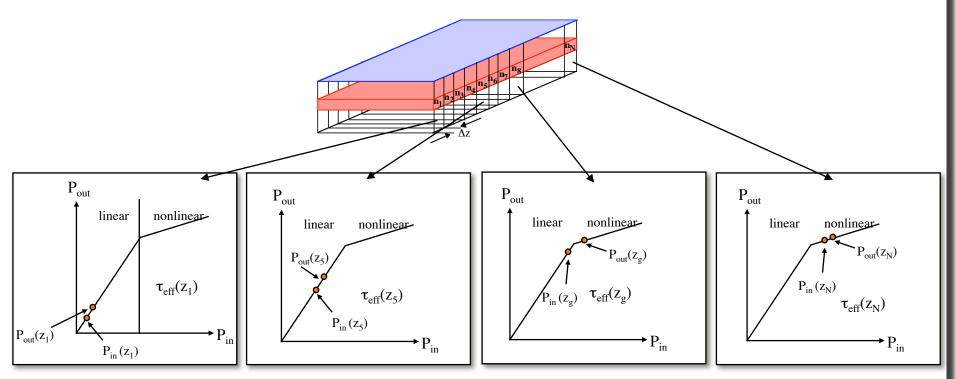
$$\Delta v_A = \Delta v_g \left(\frac{\ln 2}{g_0 L - \ln 2} \right)$$


Lumped vs. Distributed Models


⇒ Lumped

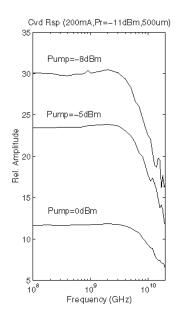
- ⇒ Carrier density averaged over amplifier length
- ⇒ Analytic expressions obtainable
- \Rightarrow n(λ ,t) is independent of z
- ⇒ Analytic expression do not predicted behavior that depends on z varying n.

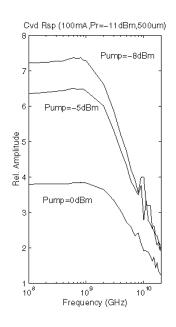
⇒ Distributed


- Amplifier discretized into N sections, each of length Δz with $n_i(\lambda,t)$ averaged over Δz .
- ⇒ Analytic expressions difficult
- ⇒ Requires numerical modeling
- \Rightarrow n(λ ,t, z)
- ⇒ Predicts z dependent behavior
 - ⇒ Frequency response
 - ⇒ Wavelength dependent gain

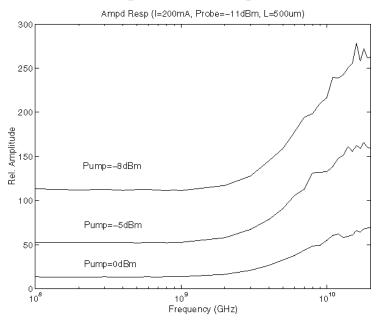
z-Dependence of Carrier Lifetime and Gain Saturation

- Both the carrier lifetime (effective) and the optical signal power relative to gain saturation can change as a function of z! 1 Of Z: $\frac{1}{\tau_{eff}(\lambda, z)} = \frac{1}{\tau_{C}(\lambda, z)} + \sum_{i=1}^{N} \frac{1}{\tau_{i}(\lambda, z)}$
- Define an effective time constant

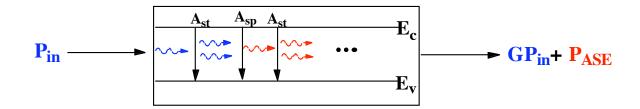

ECE228B, Prof. D. J. Blumenthal


Lecture 10, Slide 9

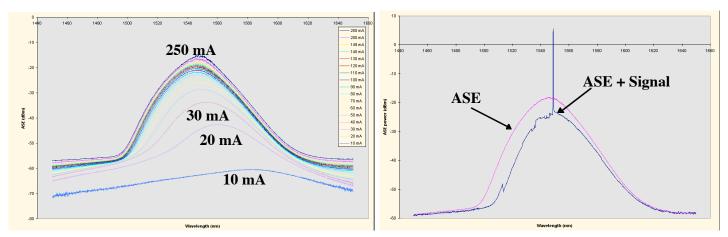
Small Signal Frequency Response


- \Rightarrow Depends on evolution of t_{eff} as signal propagates through amplifier
 - ⇒ Depends on time average photon density at location z
 - Depends on amplifier P_{sat}
 - ⇒ Depends on input power and wavelength
 - ⇒ Depends gain profile at each section

At output, linear operation only


At output, nonlinear operation

ECE228B, Prof. D. J. Blumenthal


Lecture 10, Slide 10

Amplified Spontaneous Emission (ASE)

ASE Power Spectrum at Various Bias Currents

SOA Power Spectrum with and without signal $(I_{bias} = 150 \text{mA})$

Amplifier Noise

⇒ Noise figure is defined as

$$F_n = \frac{\left(SNR\right)_{in}}{\left(SNR\right)_{out}}$$

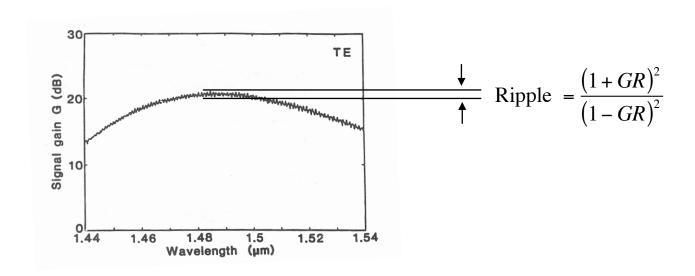
Assuming the amplifier output is G times the input power, the SNR at the input is given by

$$\left(SNR\right)_{in} = \frac{\left(RP_{in}\right)^2}{2q(RP_{in})\Delta f}$$

⇒ At the amplifier output, assuming white additive noise

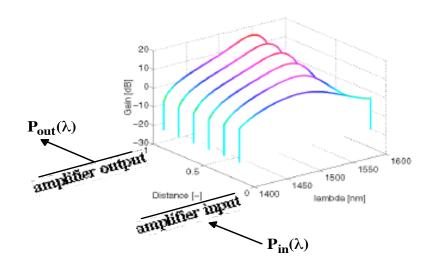
$$S_{SP}(v) = (G-1)n_{sp}hv$$

⇒ Output SNR can be written as

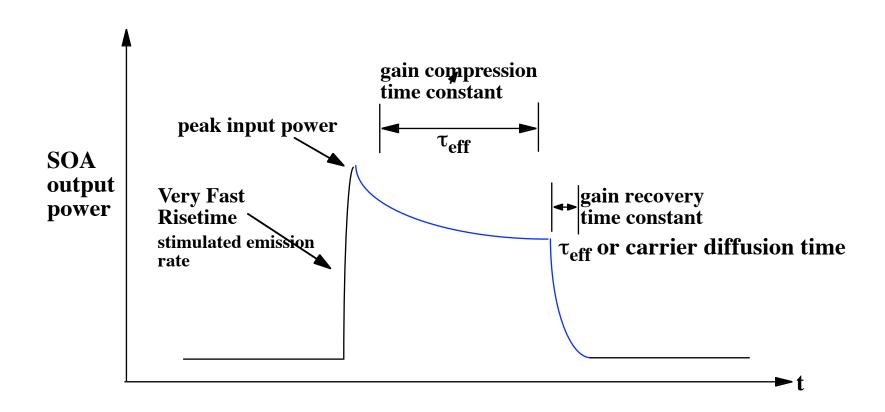

$$\left(SNR\right)_{out} = \frac{\left(RGP_{in}\right)^2}{2q(RP_{in})\Delta f + 4(RGP_{in})(RS_{SP})\Delta f} \approx \frac{\left(GP_{in}\right)}{4(S_{SP})\Delta f}$$

⇒ And the noise figure as (for large G)

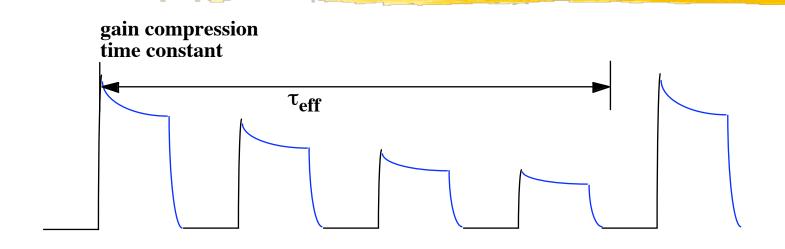
$$F_n = \frac{2n_{sp}(G-1)}{G} \approx 2n_{sp}$$

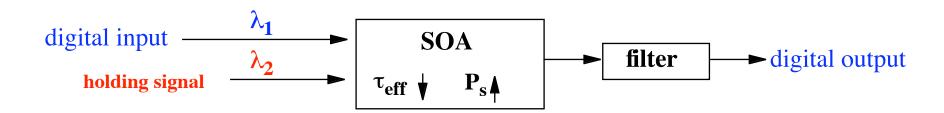

Gain Ripple

⇒ We define the flatness of the gain over the gain bandwidth as (chip gain G and facet reflectivity R)



Cumulative Distributed Gain


- ⇒ Total gain-wavelength dependence is function of
 - ⇒ Input power and wavelength
 - ⇒ Amplifier saturation power as a function of wavelength
 - ⇒ Amplifier bias
 - ⇒ Amplifeir design parameters (geometrical and physical)



Gain Compression and Recovery

Pattern Dependent Gain

Crosstalk

- ⇒ Intersymbol interference due to finite gain recovery at high bit rates
- ⇒ Intermodulation distortion in a multichannel WDM or OFDM transmission system due to FWM products.
- ⇒ Intersymbol interference in a multichannel OFDM transmission system due to SPM or CPM.