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Lecture 13: Optical Combiners, 
Filters, Multiplexers, AWGRs and 
Switches
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Optical Couplers
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T11(λ) is the power transfer function from input 1 to output 1.

T12(λ) is the power transfer function from input 1 to output 2.

κ is a function of the waveguide geometry, separation and physical parameters


Example: For κl = (2m+1)π/4, and m is a nonnegative integer, power at the input 
will be split evenly between the two output ports. This is also known as a 3-dB 
coupler. Note that for a signal incident at one input the signals at both outputs will 
have a π/2 relative phase shift.
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N x N Splitters and Combiners


  Important rule for optical splitters 1xN and combiners Nx1

  If the device is frequency and polarization independent, the power loss is at 

least equal to 1/N


ε = Excess Loss


1 x N


Splitter 

Pin


Pin/N - ε

Pin/N - ε

Pin/N - ε


Pin/N - ε


N x 1


Combiner 


Pin


Pin/N- ε


  The total loss of the 
device is thus:


dBdB
NLoss ε+⋅= )(log10 10
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1xN Splitters and Combiners


Integrated optic 1xN device layout


Optical beam propagation 
simulation showing beams (red) 
directed from input port to  
output ports
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Splitter/combiner typical characteristics


  The excess loss is of the order of 1 dB

  Commercial devices are available up to 16 ports

  Polarization dependent loss may be as low as 0.2 dB

  Standard devices show partial frequency dependence (1-2 dB over the 30nm 

C-band)

  Ultra-flat devices (over more than 30 nm) are available


  1x2 splitters with different splitting ratios

  50/50 splitters (3 dB couplers)

  10/90,  5/95, 1/100 splitters (sometimes called “optical taps”)
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Wavelength Filters and Multiplexers
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Wavelength Filters and Multiplexers


 Desirable Characteristics

   Long term frequency stability and accuracy (low temperature sensitivity)

   Flat passband function (important for cascading filters and tolerance to 

channel drift and misalignment)

   Low crosstalk

   Polarization independent

   Low polarization mode dispersion (PMD)

   Low insertion loss and polarization dependent loss (PDL)

   High return loss

   High resolution for DWDM systems

   Large free spectral range (FSR) for most applications
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Wavelength Filter Passband Characteristics
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λ0 = 2neffΛ

Fiber Bragg Gratings (FBG)
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Bragg Grating Filter Transmission


Δλ = λ - λ0

Δ is a measure of FWHM


High side lobes can be 
decreased to below 
-25 dB using a 
technique know as 
apodization
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Tunable FBGs for ROADM
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Fabry-Perot Filters


➱   Can be tuned to a different wavelength by adjusting the cavity length (e.g., by 
piezoelectric crystal. High loss, polarization dependence and sharp passband limit 
use as WDM filter.
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Mach-Zehnder Interferometer Filters
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Single Stage (can separate 1.3µm from 1.55µm)


Multi Stage (for narrow passband)
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n1δ i
in + n2ΔL + n1δ j

out = pλ (for integer p)
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Rowland Circle Construction


  Used in the design of AWGRs
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Conclusions on filters


  Optical Filters, demultiplexers and demultiplexers have reached a very 
high level of reliability

  They are widely used in WDM applications

  Have application in dispersion compensation


  The issue of fast (µs) tunable filter is still an open issue

  AOTF, though very promising, has not reached a total maturity


  Slowly (ms) tunable filters are now available

  Based on mechanical movements of a grating or an external cavity mirror
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Optical Isolators


  Optical equivalent of a diode

  Used to prevent back reflections from fiber/air or fiber/semiconductor interfaces.

  Reflections can cause instability in SC lasers and increase interferometric noise.

  Typical specifications : 
Low loss = insertion loss ~1 dB.

 
 
 
 
High loss = Return loss 40 - 50 dB. 


Pin
 Pout


Low loss


High loss


High return  loss
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Polarization independent optical isolators
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Optical Circulators
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Photonic Crossconnects
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• 
2D: 

– 
Wavelength routed

– 
Bubble (Total internal reflection)

– 
Thermo-optic (Glass or silicon)

– 
Electro-optic

• 
LiNbO3, InGaAsP, GaAs, Liquid Crystal

• 
Mach-Zehnder, Fabry-Perot, Michelson Interferometers

– 
Acousto-optic

– 
Gain (splitter with gain on each arm)

• 
Er:SiO2, InGaAsP

– 
MEMS (MicroElectroMechanical Systems)

• 
3D: 

– 
MEMs
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Optical Space Switches
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• 
2D so small switches are best (<32 ports)

• 
Power consumption (0.5 W per switch)

• 
Speed (typically 6-8 ms)

• 
Loss (1 dB/cm typical)

• 
Size: 4” wafer for 16x16 switch


Thermo-Optic Switches
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  Micromachines are miniature machines built in ways similar to the 
way an integrated circuit is built. 


  By patterning various layers of polysilicon as they are deposited, 
one can build structures which look like those shown below


   After the release step in which part of the structures are etched 
away, the devices are capable of motion �

http://www.bell-labs.com/org/physicalsciences/projects/mems/mems1.html


Micro Electro-Mechanical Switches - MEMS
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2D MicroElectroMechanical Systems (MEMS) 
Mirrors
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• 
No moving parts. Ink jet technology

• 
2D so small switches (<40 ports) are best

– 
Wavelength range: limited

– 
Power consumption: heater power significant
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 Wavelength Switch/Router
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Wavelength Interchanger
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Time Switches


1234

Demultiplexer
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Switched Delay Lines


  Switching fabric (R. Thompson, JLT)

  Resolve NxN switch output port contention (D. K. Hunter, JLT, 1993)

  Resolve internal blocking states, shared buffers (Boncek, Electron. Letts)

  Resolve wavelength switching conflicts (Kazovsky, CORD, PTL, 1995)

  Homodyne coherent crosstalk (M. Tur, Optics Letts., 1995)


Crosstalk path (C)


Primary path (1-C)


A0(t)

A1(t)


Δτ


(1-C)A0(t)+CA1(t)

(1-C)2A0(t)+CA1(t) +

C(1-C)A1(t+Δτ) +

C2 A0(t+Δτ) 


Δτ
 A1
 A0
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Mixed Switching Fabrics
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Integrated Optic Space Switches


active- passive passive-active

active-active gated array

2 x 2 
Active Switches
(e.g., directional coupler, digital switch)

3 dB Passive CombinersOptical Gates
(e.g., SOAs)
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Sources of Optical Crosstalk


  Crosstalk is generically a superimposition of two different useful signals

  It may be due to:


  Reflections and Recirculatory Paths

  Fiber and Amplifier Nonlinearities

  Photonic Switching and Gating Elements

  WDM Add/Drop Components

  WDM Multiplexers/Demultiplexers


  In traditional point-to-point link without optical add-drops, crosstalk 
mainly comes from nonlinear effects


  In next-generation all optical network, it can be generated by any device 
that handle the signal in the photonic domain
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Digital Optical Crosstalk


 Do signals from different optical  digital sources mix incoherently or 
coherently ?


  Coherence determined by the rate of random laser phase 
fluctuations relative to the observation interval

 The observation interval is determined by the bit rate


P1(t)


φ1(t)
 φi
 φi+1
φi-1


A1(t)


Δφ(t)
 Δφ(t)


Tobs


Assume φi and Δφ uniform distributed on [0,2π]


1/Δνl
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Incoherent and Coherent Crosstalk


 Coherent


 Incoherent


Pprim(t)

φprim(t)

Pint (t)

φint(t)


Photodetector


Averages over many 
uncorrelated

random phase shifts


Pprim(t)

φprim(t)

Pint (t)

φint(t)


Photodetector


Phases are stationary 
over and fields are 
correlated
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Acceptable Crosstalk levels


  Incoherent crosstalk can in most cases be kept under control with good 
optical filtering at the receiver


  Coherent crosstalk may easily become detrimental

  The coherently interfering channels should be at least 30 dB smaller than the 

useful channel

  Note that in mesh configuration, coherent crosstalk may be generated by the 

interaction of a signal with a delayed version of the same signal, that has 
followed another path


Received eye diagram from strong 
coherent crosstalk levels



