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Lecture 14: Dispersion 
Compensation
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Overview of Dispersion and Dispersion 
Compensation
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Point-to-Point Fiber Transmission


 Key aspects of point-to-point fiber transmission

 Optical modulation (we have covered already)

 Noise in optical systems & Receiver sensitivity (This 

lecture)

 Attenuation/loss & link power budget (This lecture)

 Linear effects in fiber transmission (This lecture)

 Nonlinear effects in fiber transmission (Not covered in this 

class
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WDM Fiber Transmission Links
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 System Design Issues


➫    Receiver sensitivity and degradation

➫    Loss and optical amplification

➫    Dispersion (chromatic, modal, polarization)

➫    Signal-to-noise ratio (SNR)

➫    Timing Jitter

➫    Optical nonlinearities (fiber and amplifier)

➫    Crosstalk

➫    Power Penalties

➫    Transient effects
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Dispersion in Single Mode Fibers


  Modal dispersion in multimode fibers is not present in single mode fiber 
(SMF)


  However, other types of dispersion are present in SMF

  Material dispersion

  Waveguide dispersion

  Polarization mode dispersion


  The first two effects fall under the term “Chromatic Dispersion”

  The third effect is known as PMD

  Dispersion can set the ultimate bit-rate limit in single mode fiber when loss 

and fiber nonlinearities are not dominant
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Pulse Broadening


Assuming a Gaussian shaped input pulse and first order dispersion dominates (β2 ≠0)
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➥    Define Dispersion Length

➥    An unchirped pulse (C=0) will broaden by a factor of √ 2 at z = LD
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Chromatic Dispersion

  The two terms β2 and β3 of the previous equation are the derivative of the “mode 

propagation constant” β(ω)

  The meaning of β(ω) is clear when considering a single pulse propagation


➯  It turns out that, considering  the dispersion term only 

➯  The phase velocity (νp) is the velocity of the center frequency ω0, 

➯   The group velocity (νg) is the velocity of the center of the pulse. It is the 
value that determine the practical “velocity” of the transmission of the 
information (energy) in the fiber 
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Group Velocity Dispersion (GVD)


  Group velocity (GVD) is frequency-dependent

  Any communication signal (pulse) has a given bandwidth


  Different frequencies in pulse => Different group delays => Leads to pulse distortion

  A more quantitative analysis can be carried out by considering that the fiber acts as a filter 

with the following transfer function:


  The coefficient β2 and β3 are evaluated on the pulse central frequency/wavelength ω0


zj
eAzA









+−

⋅=
3322

22),0(),(
ω

β
ω

β

ωω



ECE228B, Prof. D. J. Blumenthal
 Lecture 14, Slide 10


Group Velocity Dispersion (GVD)

  The previous equation can be exactly solved in some particular cases, among 

which the most important one is the propagation of a Gaussian pulse


  The Gaussian pulse is broadened after propagation of distance L by the 
amount:


  where Δω is the spectrum occupied by the pulse

  ανδ β2 is the dispersion (material and waveguide) of the fiber
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Dispersion parameters: β2 and D


  β2 is called the “group velocity dispersion” GVD parameter

  It is expressed in units of ps2/km


  From a mathematical point of view, it is easier to handle equations dealing 
with β2 and optical frequency


  It is also convenient to specify dispersion in terms of optical wavelength

  The “D” parameter is


  D is called the “Dispersion parameter”, and it is expressed in units of ps/
nm-km
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First order dispersion


Total Fiber Dispersion
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Waveguide dispersion can be 
combined with material 
dispersion to shift the zero 
dispersion frequency


 The waveguide geometry and design also introduces dispersion called “waveguide dispersion” 
which can be in the opposite sign as the material dispersion
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Dispersion Shifted and Flattened Fibers
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Higher Order Dispersion


If the wavelength is chosen such that D=0 or β2=0, there is still dispersion 
described by the higher order dispersion terms S or β3
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Example: 

A typical value of S for standard fiber at zero dispersion wavelength  is S=0.085 ps/km-
nm2. For dispersion-shifted fiber with λZD=1.55 µm, a typical value of S is S=0.05 ps/
km-nm2. 


The S parameters is relevant mostly for 
systems:


•  Working close to a zero first 
order dispersion

•  Using WDM (i.e. multiple 
wavelength)
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General Dispersion Formula 


  This formula can be used to derive dispersion limits in several different 
transmission scenarios 


➥    If we take into account more realistic source and fiber effects †

➥    we include β3

➥ source with a generic spectral width σω
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†D. Marcuse, Applied Optics, Vol. 19, p. 1653, 1980 and Vol. 20, p. 3573, 1981.


Where V = 2σ0σω 
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Dispersion Bit Rate Limitations
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For standard SMF fibers, the 
limit at 10 Gbit/ is of the order 
of 100 km (400 km at 2.5 Gb/s)


Note that the limit at the zero 
dispersion points are extremely 
high. Unfortunately they cannot 
be reached due to other effects 
(fiber nonlinearity)
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Polarization Mode Dispersion (PMD)


  An input optical pulse is randomly coupled, along the fiber, with the two 
local orthogonal states of polarization


  The two states has slightly different group velocities

  This effect is  called PMD


Related to PMD delay


➯    PMD will broaden pulses in the same way other dispersion mechanisms do

➯    PMD changes instantly along fiber as a function of time, temperature and wavelength

➯    Power penalties associated with PMD are time varying
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PMD limit

  A (quite approximated) formula that shows the PMD limit is the following (see 

Optical Fiber Communications IIIa, I. Kaminov, T. Koch, Academic Press)
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 Bit rate = 40 Gbit/s


PMD=0.1 ps/km0.5
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  New fibers have PMD values of the order of 0.1 ps/km0.5


  PMD is an issue on ultra long distance only

  Installed fiber often have PMD values close to 1 ps/km0.5


  In these cases, PMD may be a fundamental issue even at 10 Gbit/s
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Dispersion Compensation Motivation

  Optical amplifiers have removed optical loss as the primary limitation. 

Transmission system bit rates are now “Dispersion Limited”

  Operating at the zero dispersion wavelength is good for single channel but 

makes nonlinearities a primary limitation for WDM

  Dispersion accumulates over multiple fiber/amplifier spans 

  Fiber nonlinear effects decreases when increasing the value of the 

dispersion parameter D

  The solution: find a way to have


  high local dispersion along the link, to reduce nonlinear effect

  Reduced dispersion effects

  Approaches


 Pre-chirp

 Post compensation

 Dispersion  management
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Dispersion Pre-Compensation

➱    Pre-Chirping and Pulse Shaping: Pre-distort the pulse so that dispersion 
produces a close to ideal pulse at the output of a fiber of length L with dispersion β2. 
For example, prechirping the laser with parameter +C in a fiber with dispersion -β2.
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† G. P. Agrawal, Fiber Optic Communications Systems, Wiley-Interscience
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Dispersion Pre-Compensation

➱    Optical Amplifier Induced Chirp: The sign of chirp induced by directly 
modulating a semiconductor laser is opposite in sign to the chirp induced by a 
semiconductor optical amplifier on an input optical bit when operated in gain 
saturation.
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Mid-Span Compensation


  Dispersion Management. Basic idea:

  Alternating lengths of fiber with opposite dispersion sign with net zero 

dispersion at end of link. 

  This was the initial approach, developed 5-6 years ago


  It was then realized that much better results in terms of nonlinearity 
reduction can be achieved by properly designed dispersion maps
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Mid-Span Compensation


➱    Phase Conjugation via Four-Wave Mixing (FWM)
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Post Compensation


  Dispersion is compensated at the end of the link, usually with a 
concentrated optical device, such as a suitable Bragg grating


➱    High Dispersion Fibers

➱    Optical Filters

➱    Fiber Bragg Gratings
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Dispersion management


  Optimal dispersion maps are extremely difficult to be studied

  The optimization is usually performed by a mix of simulation and 

experiments
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Dispersion maps

  Optimization of the dispersion map of a 400 km long terrestrial systems

  Results obtained using the commercial simulator OptSim
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Dispersion Maps and Optical Networks


  Optimal dispersion map design yields closer to the ultimate fiber capacity 
of point-to-point systems

  All transmission records uses (among other techniques) a careful choice of 

dispersion map

  In a reconfigurable all-optical networks, signals may follow different path, 

with different power levels

  Dispersion optimization is even more complex

  Several approaches are currently being studied


  Several research groups have studied electrical or optical adaptive 
receivers

  Same technique as in electronic adaptive equalizing filters
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Broadband Dispersion Compensation


  Since dispersion is wavelength dependent (β2(λ)), compensation at one 
WDM channel may not be adequate at another channel


  Can use parallel bank of dispersion compensators (one for each channel)

  Can design a single broadband compensator


From Kaminow, page 452


From Kaminow, page 24



