
ECE228B, Prof. D. J. Blumenthal Lecture 15, Slide 1

Lecture 15: Receiver Design
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Receiver Design
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Signal-to-Noise Ratio (SNR)
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Optical Signal-to-Noise Ratio (OSNR)

<P1
optical>

<P0
optical>

2σ1

2σ0

➥    Noise is accumulated in the optical channel due to 
➥    RIN, MPN, Optical Amplifier Noise and Shot Noise.

➥    OSNR for each level and for complete signal can be defined

OSNR1 =
P1
Optical 2

σ1
2

OSNR0 =
P0
Optical 2

σ0
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Optical Signal-to-Noise Ratio (OSNR)
  OSNR is an extremely important parameter in optically amplified systems
  A poor OSNR cannot in principle be improved at the receiver
  It is mainly determined by:

  Useful signal level
  ASE noise level

  OSNR is typically measured using an Optical Spectrum Analyzer (OSA)
  The resulting quantities are thus time averaged

  The OSNR is defined on a given resolution bandwidth Δf (an example standard 
requires 0.1 nm =12.5 GHz)
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Optical Amplifier OSNR

➥    The signal at the output of an optical amplifier in response to a noise free signal at the input is

ED
FA


Pin <Pout> = <GPin+mPN>

➥     The following formulation accounts for all noise terms that can be treated as Gaussian noise 
due to the optical amplifier

optspN BGhnmP )1( −= ν
G = amplifier gain
nsp = spontaneous emission factor
m = number of polarization modes (1 or 2)
PN = mean noise in bandwidth Bopt
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OSNR at the output of EDFA
  The optical OSNR on a 0.1 nm band around 1550 nm, at the output of an 

EDFA, is approx. given by:

  It is thus determined ONLY by:
  The optical input power for the useful signal
  The EDFA noise figure

  Typical values
  Pin=-35dBm
  F=5 dB
  OSNR=-35-5+58=18 dB
  This is the typical OSNR required at the receiver for a 10 Gbit/s system

dBFPOSNR EDFA
in
signal 58+−≅
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Optical Amplifier Noise Figure

At the amplifier output SNRout =
Pin
PASE
Total

Amplifier Noise Figure (FN)  FN =
SNRin

SNRout

=
Pin

2

σ in
2
σ out

2

Pout
2

≈ 2nsp for G >> 1
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Electrical Shot Noise
  The shot noise generated in the photodetection process is physically due to the “quantum 

granularity” of the received (and photo converted) optical signal
  It sets the ultimate limit of an optical receiver (only in theory, as shown later)
  It is a Poisson noise, but it is usually approximated as a Gaussian noise

Detector 
(BW = Δf)

Optically induced current + random electron fluctuations

Detector Shot Noise

Thermally induced current + random electron fluctuations 

Pin I(t) = <Ip> + ishot(t)

Detector Shot NoiseDark Current (Id)

Constant Input Optical Power

Popt

t t

I

2σshot
<Ip>

σ2Shot = 2q(Ip + Id)Δf
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Thermally Generated Noise
  Noise generated by any electrical component due to the thermal motion of 

electrical carriers inside conductive media
  It is a Gaussian noise source 

σ2
th = 4 kBTRLΔf

(BW = Δf)

Conductor
(e.g. Resistor, 
amplifier)

Random 
thermal 
electron 
motion

Iin

V(t) = Vout + vth(t)

+

-

Zin = RL

Iin I(t) = <Iout> + ith(t)

t

I

2σth
<Iou>Iin

I
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Amplifier Noise
  The amplifier enhances the thermal noise at the input by a factor called the 

amplifier “Noise Figure

σ2
out = 4 kBTRLFnΔf

Amplifier
(BW = Δf)
(Gain = G)

Iin(t) = <Iin> + ith(t)

t

I

2σth
<Iou>

t 2(G2σth
2
 + σamp

2)1/2


<Iou>

SNRin =  <Iin>2/σ2
th SNRout =  <Iout>2/σ2

out

Fn = (SNRin)/(SNRout) = (<Iin>2/σ2
th)/(G2 <Iin>2 /(G2σth

2
 + G2σeff

2) ) = σ2
out / σ2

th 

Iout(t) = G [<Iin> + iin(t)] + iamp(t) 
          = G <Iin> + [G iin(t) + iamp(t)] 
          = <Iout> + iout(t)

σ2
out = σ2

th Fn
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Electrical Signal-to-Noise Ratio (SNR)

➥    At the receiver, there is noise on the signal arriving at the input and and after detection 
added to that is noise that is injected at various stages of the receiver

➥    The current output of the receiver in(t) has current contributions from
➥    Electrical shot noise
➥     Thermal noise
➥    APD detectors have additional multiplication noise
➥    Amplifier noise

Receiver I(t) = Ip(t) + in(t)

2σ1

2σ0

Popt(t) = PSig(t) + Pn(t)
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Electrical Signal-to-Noise Ratio (SNR)

➥    At the receiver, there is noise on the signal arriving at the input and there is noise that is 
injected at various stages of the receiver

Receiver

σ2RIN + σ2MPN + σ2BEAT + σ2SIG-SPONT

I(t) = Ip(t) + in(t)

<P1
electrical>

<P0
electrical>

2σ1

2σ0

Popt(t) = PSig(t) + Pn(t)

σ2Thermal + σ2Shot + σ2BEAT + σ2SIG-SPONT

For a pin detector.
Replace with σAPD if an 
APD is used
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SNR and system performance

  The resulting global electrical SNR at the receiver determines the 
performance of a system

  We show in the following slides
  The SNR for different systems, assuming constant (non-modulated) input 

power
  Starting from the SNR formulas, we derive the expression for the BER of a 

digital system
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SNR in pin Receivers
  SNR in pin receivers, without optical amplification

SNR =
Average signal power

Noise power
=
I
p

2

σ 2

=
ℜ2Pin

2

2q(ℜPin + ID)Δf + 4(κ BT
RL

)FnΔf
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SNR in pin Receivers

  Note that without optical amplification, the shot 
noise variance is well below the thermal noise 
variance

  This regime of operation is called “thermal 
noise limited detection”
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SNR in Optically Preamplified Receivers (OPRs)

 The ASE noise levels on the electrical photodetection signal 
combines with all the electrical noise levels
 The resulting equations for the resulting global electrical SNR are 

quite complex 
 Still, in most practical situations, only one noise source determines the 

system performance
 We decided to skip the equations, but to show in the next slides the 

numerical results in practical situations
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SNR due to Optical Amplifier ASE noise
  Effects of ASE noise (neglecting other noise sources)
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SNR in OPRs
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SNR in OPRs

P 1 =-20dBm
P0 = -30 dBm

B=10Gbps
Id =1nA
Fne  = 3dB
Fnedfa = 5dB
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  Note that in any realistic situation, as soon 
as the EDFA gain is above a certain level, 
all electrical noises are negligible

  Thus, in an optically amplified systems, 
electrical noises are negligible in most 
cases

Electrical noise 
limited SNR

ASE noise 
limited SNR
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SNR in OPRs
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SNR Enhancement in OPRs
➱   The detected SNR can be enhanced using an optically pre-amplified receiver
➱    The OPR always degrades the SNR by a minimum of 3dB (i.e. Fn = 3dB)
➱    Yet there will be an improvement in the electrical SNR if

➱    Thermal noise is present in the receiver and
➱    The optical signal level is relatively high compared to the ASE noise power

x =
SNRe

OPR

SNRe

=
1

2ηnsp
1 +
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The SNR enhancement factor is given be the ratio of the SNR using an optical preamplifier 
(SNRe

opt) to the SNR without optical preamplification (SNRe) assuming large G and Ps >> PASE
†

† Erbium Doped Fiber Amplifiers, E. Desurvire, Wiley-Interscience
-60 -55 -50 -45 -40 -35 -305

10
15
20
25
30
35
40

Optical Signal Power (dBm)

SN
R 

En
ha

nc
em

en
t F

ac
to

r

λ = 1.55 µm
T = 300K



ECE228B, Prof. D. J. Blumenthal Lecture 15, Slide 23

Direct-Detection (DD) receivers

  A complete direct detection receiver is composed of:
  Optical amplifier (optional)
  Optical filter (optional)
  Photodiode
  Electrical filter/amplifier
  Components for time-sampling at the middle of each bit 
  A threshold estimator

  The receiver performance depends on a combination 
of the combined characteristics for these elements
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Data Recovery: DD Receivers

  The bit error rate (BER) of the system depends from the statistics of the 
resulting noise on the “1” and “0” levels

Decision Threshold

Sampling time and 
integration window

PDF for a “1” transmitted

PDF for a “0” transmitted t

xdec(t)
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Bit Error Rate (BER)

➾ Probability of error = P[0]P[1|0] + P[1]P[0|1]
➾ P[0] = Probability a “0” was transmitted
➾ P[1] = Probability a “1” was transmitted
➾ P[1|0] = Probability a “1” is received given that a “0” is transmitted
➾ P[0|1] = Probability a “0” is received given that a “1” is transmitted

<I1><I0>

2σ12σ0

ID

PDF for a 
“1” transmittedPDF for a 

“0” transmitted

Area = P[0|1]  Area = P[1|0] 

“0” “1”

P 1| 0[ ] =
1

σ0 2π
exp

I0 − I( )2

2σ 0
2

 
 
 

  

 
 
 

  ID

∞

∫ dI

P 0 | 1[ ] =
1

σ1 2π
exp

I1 − I( )2

2σ12

 
 
 

  

 
 
 

  ∞

ID

∫ dI
I

Under the gaussian assumption:
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BER and Q-Factor

The “near” optimum decision threshold is ID =
σ 0 I1 +σ1 I0

σ 0 + σ1

The bit error rate (BER) assuming 
Gaussian noise can be written as

( )
π2
2/exp

22
1 2

Q
QQerfcBER −

≈







≅

Defining the Q factor Q =
I1 − I0
σ1 + σ0

Q0 =
ID − I0
σ 0

Q1 =
ID − I1
σ1

P 1| 0[ ] =
1
2π

exp −
I2

2
 
 
 

 
 
 Q0

∞

∫ dI

P 0 | 1[ ] =
1
2π

exp −
I2
2

 
 
 

 
 
 Q1

∞

∫ dI
Substituting

•  BER is the most important performance 
indicator of a receiver
•  Q-factor is a good indicator
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BER vs. Q-Factor
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Important values:
•  Q~16 dB -> BER=10-9
•  Q~17.0 dB-> BER=10-12

•  slope: 2 dpades per dB 
around BER=10-9 (slope 
increases when increasing 
reference BER)

Q [dB]  (20 log10 Qlinear) 
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Receiver Sensitivity

Define: Receiver Sensitivity is the minimum average power needed to achieve a certain 
BER at a given bit-rate. The receiver sensitivity is measure at the receiver input

Prec =
P1 + P0
2

Photodetector

Optical 
Input

Prec

G

Optical 
Preamplifier

Optical 
Input

Prec

Photodetector

The receiver sensitivity is expressed as an average received power
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Receiver Sensitivity

Prec =Q2hvsBe F0 +
1
Q

Mnsp2 2
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1
η + 2nspG
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For a given Q (BER), the minimum average received power can be found by solving for         
from σ0 and σ1

†


Prec

For high G, Be = B0/2, and Q = 6=16dB ->BER=10-9 (M=2 for all polarization states)

† Erbium Doped Fiber Amplifiers, E. Desurvire, Wiley-Interscience
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Receiver Sensitivity
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Important value:
•  for a 10 Gbit/s receiver, the 
typical ASE-limited 
sensitivity value is of the 
order of –37 dB
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Receiver Sensitivity Enhancement
Similar to SNR enhancement, we can define the improvement in Receiver Sensitivity of an 
optically preamplified receiver relative to a non-amplified pin receiver† 

† Erbium Doped Fiber Amplifiers, E. Desurvire, Wiley-Interscience
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Summary on receiver sensitivity

The typical receiver sensitivities for a 10 Gbit/s system are:

  Theoretical quantum limit, direct detection, no optical amplification, shot 
noise limited
  Sensitivity= - 45 dBm (approx, and never achieved in practice)

  Direct detection, no optical amplification, thermal noise limited
  Sensitivity= -20 dBm (on the best available commercial receivers)

  Optically pre-amplified direct detection receiver
  Sensitivity= -37 dBm (with the best available commercial receivers)
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Long-haul optically amplified systems

  Long haul optically amplified links are designed so that the EDFA gain 
exactly compensated the span loss
  It is sometimes called the “transparency condition”

  In these systems, the only relevant noise effect is the accumulation of ASE 
noise introduced by each EDFA
  Receiver electrical noise is usually negligible

ED
FA


ED
FA


ED
FA


ED
FA
Tx Rx

Pavg

LA

To balance loss and gain: e-αLA = 1/G
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OSNR after a chain of EDFA

  The OSNR at the output of these systems is approximately given by:

  Where:
  Pout

EDFA is EDFA the signal output power 
  αspan is the loss per span
  Nspan is the total number of spans

  Example: Trans-Pacific link, 8000 km
  Pout

EDFA = 0 dBm (power per channel)
  50 km spans, αspan =12 dB
  Nspan =160
  FEDFA=5dB

dBFNPOSNR EDFAspanspan
out
EDFA 58log10 10 +−−−≅ α

dBOSNR 18≅⇒

Important: the OSNR
•  increases with

•  the signal output 
power of the EDFA

• Decreases with
• Span loss
• Number of spans


