

Lecture 15: Receiver Design

ECE228B, Prof. D. J. Blumenthal

Receiver Design

ECE228B, Prof. D. J. Blumenthal

Signal-to-Noise Ratio (SNR)

ECE228B, Prof. D. J. Blumenthal

Optical Signal-to-Noise Ratio (OSNR)

Noise is accumulated in the optical channel due to

▶ RIN, MPN, Optical Amplifier Noise and Shot Noise.

→ OSNR for each level and for complete signal can be defined

$$OSNR_{1} = \frac{\langle P_{1}^{Optical} \rangle^{2}}{\sigma_{1}^{2}}$$
$$OSNR_{0} = \frac{\langle P_{0}^{Optical} \rangle^{2}}{\sigma_{0}^{2}}$$

ECE228B, Prof. D. J. Blumenthal

Optical Signal-to-Noise Ratio (OSNR)

- ⇒ OSNR is an extremely important parameter in optically amplified systems
- \Rightarrow A poor OSNR cannot in principle be improved at the receiver
- \Rightarrow It is mainly determined by:
 - ⇒ Useful signal level
 - \Rightarrow ASE noise level
- ⇒ OSNR is typically measured using an Optical Spectrum Analyzer (OSA)
 - \Rightarrow The resulting quantities are thus time averaged
- ⇒ The OSNR is defined on a given resolution bandwidth Δf (an example standard requires 0.1 nm =12.5 GHz)

ECE228B, Prof. D. J. Blumenthal

Optical Amplifier OSNR

The signal at the output of an optical amplifier in response to a noise free signal at the input is

► The following formulation accounts for all noise terms that can be treated as Gaussian noise due to the optical amplifier

$$P_N = m n_{sp} h \nu (G-1) B_{opt}$$

G = amplifier gain $n_{sp} =$ spontaneous emission factor m = number of polarization modes (1 or 2) $P_N =$ mean noise in bandwidth B_{opt}

OSNR at the output of EDFA

⇒ The optical OSNR on a 0.1 nm band around 1550 nm, at the output of an EDFA, is approx. given by:

$$OSNR \cong P_{signal}^{in} - F_{EDFA} + 58 dB$$

- \Rightarrow It is thus determined ONLY by:
 - \Rightarrow The optical input power for the useful signal
 - ⇒ The EDFA noise figure
- → Typical values
 - $\Rightarrow P_{in}$ =-35dBm
 - \Rightarrow F=5 dB
 - $\Rightarrow OSNR = -35 5 + 58 = 18 \text{ dB}$
 - ⇒ This is the typical OSNR required at the receiver for a 10 Gbit/s system

Optical Amplifier Noise Figure

At the amplifier output

$$SNR_{out} = \frac{P_{in}}{P_{ASE}^{Total}}$$

2

2

Amplifier Noise Figure (F_N)
$$F_N = \frac{SNR_{in}}{SNR_{out}} = \frac{P_{in}^2}{\sigma_{in}^2} \frac{\sigma_{out}^2}{P_{out}^2}$$

 $\approx 2n_{sp} \text{ for } \mathbf{G} \gg 1$

Electrical Shot Noise

- ⇒ The shot noise generated in the photodetection process is physically due to the "quantum granularity" of the received (and photo converted) optical signal
- \Rightarrow It sets the ultimate limit of an optical receiver (only in theory, as shown later)
- ⇒ It is a Poisson noise, but it is usually approximated as a Gaussian noise

Thermally Generated Noise

- ⇒ Noise generated by any electrical component due to the thermal motion of electrical carriers inside conductive media
- \Rightarrow It is a Gaussian noise source

Amplifier Noise

⇒ The amplifier enhances the thermal noise at the input by a factor called the amplifier "Noise Figure

$$SNR_{in} = \langle I_{in} \rangle^{2} / \sigma_{th}^{2}$$

$$I_{in}(t) = \langle I_{in} \rangle + i_{th}(t) \longrightarrow Amplifier$$

$$(BW = \Delta f)$$

$$(Gain = G)$$

$$I_{out}(t) = G [\langle I_{in} \rangle + i_{in}(t)] + i_{amp}(t)$$

$$= G \langle I_{in} \rangle + [G i_{in}(t) + i_{amp}(t)]$$

$$= \langle I_{out} \rangle + i_{out}(t)$$

$$\langle I_{out} \rangle \longrightarrow I_{out}(t)$$

$$F_n = (SNR_{in})/(SNR_{out}) = (\langle I_{in} \rangle^2 / \sigma_{th}^2)/(G^2 \langle I_{in} \rangle^2 / (G^2 \sigma_{th}^2 + G^2 \sigma_{eff}^2)) = \sigma_{out}^2 / \sigma_{th}^2$$

$$\sigma_{out}^2 = \sigma_{th}^2 F_n$$

$$\sigma_{out}^2 = 4 k_B T R_L F_n \Delta f$$

ECE228B, Prof. D. J. Blumenthal

Electrical Signal-to-Noise Ratio (SNR)

► At the receiver, there is noise on the signal arriving at the input and and after detection added to that is noise that is injected at various stages of the receiver

- \rightarrow The current output of the receiver $i_n(t)$ has current contributions from
 - Electrical shot noise
 - Thermal noise
 - → APD detectors have additional multiplication noise
 - Amplifier noise

ECE228B, Prof. D. J. Blumenthal

Electrical Signal-to-Noise Ratio (SNR)

► At the receiver, there is noise on the signal arriving at the input and there is noise that is injected at various stages of the receiver

SNR and system performance

- ⇒ The resulting global electrical SNR at the receiver determines the performance of a system
- \Rightarrow We show in the following slides
 - The SNR for different systems, assuming constant (non-modulated) input power
 - ⇒ Starting from the SNR formulas, we derive the expression for the BER of a digital system

SNR in pin Receivers

 \Rightarrow SNR in pin receivers, without optical amplification

$$\sigma_{Thermal}^{2} + \sigma_{Shot}^{2}$$

$$SNR = \frac{\text{Average signal power}}{\text{Noise power}} = \frac{I_{p}^{2}}{\sigma^{2}}$$

$$= \frac{\Re^{2} P_{in}^{2}}{2q(\Re P_{in} + I_{D})\Delta f + 4(\kappa_{B}T/R_{L})F_{n}\Delta f}$$

$$Detector \quad Thermal$$

$$Dark \quad noise \quad Electrical \\ Current \quad Amplifier \\ Noise \\ Figure \quad Bandwidth$$

SNR in pin Receivers

Average Received Optical power

- Note that without optical amplification, the shot noise variance is well below the thermal noise variance
- ⇒ This regime of operation is called "thermal noise limited detection"

SNR in Optically Preamplified Receivers (OPRs)

- ⇒ The ASE noise levels on the electrical photodetection signal combines with all the electrical noise levels
 - The resulting equations for the resulting global electrical SNR are quite complex
 - Still, in most practical situations, only one noise source determines the system performance
 - We decided to skip the equations, but to show in the next slides the numerical results in practical situations

SNR due to Optical Amplifier ASE noise

 \Rightarrow Effects of ASE noise (neglecting other noise sources)

$$E_{RX}(t)$$

$$E_{RX}(t) = |E_{RX}(t)|^{2}$$

$$P_{RX}(t) = |E_{RX}(t)|^{2}$$

$$R_{ASE}(t)$$

$$E_{ASE}(t) = p_{ASE}^{F}(t) + jq_{ASE}^{F}(t)$$

$$i(t) = R |E(t)|^{2} = R |E_{RX}^{F}(t) + p_{ASE}^{F}(t) + jq_{ASE}^{F}(t)|^{2} =$$
$$= R (|E_{RX}^{F}(t)|^{2} + 2 \cdot E_{RX}^{F}(t) \cdot p_{ASE}^{F}(t) + (p_{ASE}^{F}(t)) + (q_{ASE}^{F}(t)))$$

Useful S x N N x N beating

ECE228B, Prof. D. J. Blumenthal

Lecture 15, Slide 18

NXN

beating

SNR in OPRs

$$\sigma^{2}_{\text{Thermal}} + \sigma^{2}_{\text{Shot}} + \sigma^{2}_{\text{Spont-Spont}} + \sigma^{2}_{\text{Sig-Spont}}$$

$$\sigma_{SHOT}^{2} = 2q \Big[\Re(GP_{S} + P_{SP}) + I_{d} \Big] \Delta f$$

$$\sigma_{SP-SP}^{2} = 4 \Re^{2} S_{SP}^{2} \Delta v_{opt} \Delta f$$

$$\sigma_{Sig-SP}^{2} = 4 \Re^{2} GP_{S} S_{SP} \Delta f$$

$$\sigma_{SHOT-SP}^{2} = 4q \Re S_{SP} \Delta v_{opt} \Delta f$$

$$SNR = \frac{\text{Average signal power}}{\text{Noise power}} = \frac{I_p^2}{\sigma^2}$$
$$= \frac{\Re^2 P_{in}^2}{2q(\Re P_{in} + I_D)\Delta f + 4\binom{\kappa_B T}{R_L}F_n\Delta f}$$
$$\frac{\text{Detector}}{\text{Dark}}$$
$$\frac{\text{Thermal}}{\text{noise Electrical}}$$
$$\frac{\text{Receiver}}{\text{Hermal}}$$
$$\frac{\text{Receiver}}{\text{Hermal}}$$

ECE228B, Prof. D. J. Blumenthal

SNR in OPRs

ECE228B, Prof. D. J. Blumenthal

SNR in OPRs

ECE228B, Prof. D. J. Blumenthal

SNR Enhancement in OPRs

- \Rightarrow The detected SNR can be enhanced using an optically pre-amplified receiver
- \Rightarrow The OPR always degrades the SNR by a minimum of 3dB (i.e. $F_n = 3dB$)
- \Rightarrow Yet there will be an improvement in the electrical SNR if
 - \Rightarrow Thermal noise is present in the receiver and
 - ⇒ The optical signal level is relatively high compared to the ASE noise power

The SNR enhancement factor is given be the ratio of the SNR using an optical preamplifier (SNR_e^{opt}) to the SNR without optical preamplification (SNR_e) assuming large G and $P_s >> P_{ASE}^{\dagger}$

ECE228B, Prof. D. J. Blumenthal

Direct-Detection (DD) receivers

- \Rightarrow A complete direct detection receiver is composed of:
 - ⇒ Optical amplifier (optional)
 - \Rightarrow Optical filter (optional)
 - ⇒ Photodiode
 - ⇒ Electrical filter/amplifier
 - \Rightarrow Components for time-sampling at the middle of each bit
 - \Rightarrow A threshold estimator
- ⇒ The receiver performance depends on a combination of the combined characteristics for these elements

Data Recovery: DD Receivers

⇒ The bit error rate (BER) of the system depends from the statistics of the resulting noise on the "1" and "0" levels

Bit Error Rate (BER)

 \Rightarrow Probability of error = P[0]P[1|0] + P[1]P[0|1]

 $\Rightarrow P[0] =$ Probability a "0" was transmitted

 $\Rightarrow P[1] =$ Probability a "1" was transmitted

 $\Rightarrow P[1|0] =$ Probability a "1" is received given that a "0" is transmitted

 $\Rightarrow P[0|1] =$ Probability a "0" is received given that a "1" is transmitted

BER and Q-Factor

Substituting

 $P[1|0] = \frac{1}{\sqrt{2\pi}} \int_{Q_0}^{\infty} \exp\left\{-\frac{I^2}{2}\right\} dI$ $P[0|1] = \frac{1}{\sqrt{2\pi}} \int_{Q_1}^{\infty} \exp\left\{-\frac{I^2}{2}\right\} dI$

The "near" optimum decision threshold is

$$I_D = \frac{\sigma_0 \langle I_1 \rangle + \sigma_1 \langle I_0 \rangle}{\sigma_0 + \sigma_1}$$

Defining the Q factor

$$Q = \frac{I_1 - I_0}{\sigma_1 + \sigma_0}$$

BER is the most important performance indicator of a receiverQ-factor is a good indicator

The bit error rate (BER) assuming Gaussian noise can be written as

$$BER \approx \frac{1}{2} \operatorname{erfc}\left(\frac{Q}{\sqrt{2}}\right) \approx \frac{\exp\left(-\frac{Q^2}{2}\right)}{Q\sqrt{2\pi}}$$

Receiver Sensitivity

Define: Receiver Sensitivity is the minimum average power needed to achieve a certain BER at a given bit-rate. The receiver sensitivity is measure at the receiver input

The receiver sensitivity is expressed as an average received power

$$\overline{P}_{rec} = \frac{P_1 + P_0}{2}$$

Receiver Sensitivity

For a given Q (*BER*), the minimum average received power can be found by solving for \overline{P}_{rec} from σ_0 and σ_1^{\dagger}

$$\overline{P}_{rec} = Q^2 h v_s B_e \left\{ F_0 + \frac{1}{Q} \sqrt{Mn_{sp}^2 \left(2\frac{B_0}{B_e} - 1\right) + Mn_{sp}\frac{2}{\eta G}\frac{B_0}{B_e} + \frac{4k_B T}{Rq^2 \eta^2 G^2 B_e}} \right\}$$
$$F_0 = \frac{\frac{1}{\eta} + 2n_{sp}G}{G}$$

For high G, $B_e = B_0/2$, and $Q = 6 = 16 dB \rightarrow BER = 10^{-9}$ (M=2 for all polarization states)

$$\overline{P}_{rec} = 18n_{sp}hv_s B_0 \left(2 + \sqrt{\frac{M}{12}}\right)$$

† Erbium Doped Fiber Amplifiers, E. Desurvire, Wiley-Interscience

ECE228B, Prof. D. J. Blumenthal

Receiver Sensitivity

Receiver Sensitivity Enhancement

Similar to SNR enhancement, we can define the improvement in Receiver Sensitivity of an optically preamplified receiver relative to a non-amplified pin receiver[†]

Summary on receiver sensitivity

The typical receiver sensitivities for a 10 Gbit/s system are:

- Theoretical quantum limit, direct detection, no optical amplification, shot noise limited
 - \Rightarrow Sensitivity= 45 dBm (approx, and <u>never</u> achieved in practice)
- ⇒ Direct detection, no optical amplification, thermal noise limited
 - \Rightarrow Sensitivity= -20 dBm (on the best available commercial receivers)
- ⇒ Optically pre-amplified direct detection receiver
 - ⇒ Sensitivity= -37 dBm (with the best available commercial receivers)

Long-haul optically amplified systems

- ⇒ Long haul optically amplified links are designed so that the EDFA gain exactly compensated the span loss
 - \Rightarrow It is sometimes called the "transparency condition"
- ⇒ In these systems, the only relevant noise effect is the accumulation of ASE noise introduced by each EDFA
 - ⇒ Receiver electrical noise is usually negligible

OSNR after a chain of EDFA

 \Rightarrow The OSNR at the output of these systems is approximately given by:

$$OSNR \cong P_{EDFA}^{out} - \alpha_{span} - 10\log_{10}N_{span} - F_{EDFA} + 58dB$$

 \Rightarrow Where:

- $\Rightarrow P_{out}^{EDFA}$ is EDFA the signal output power
- $\Rightarrow \alpha_{span}$ is the loss per span
- $\Rightarrow N_{span}$ is the total number of spans
- ⇒ Example: Trans-Pacific link, 8000 km
 - $\Rightarrow P_{out}^{EDFA} = 0 \text{ dBm (power per channel)}$
 - \Rightarrow 50 km spans, $\alpha_{span} = 12 \text{ dB}$
 - $\Rightarrow N_{span} = 160$ $\Rightarrow F_{EDFA} = 5 \text{dB}$

Important: the OSNR

 increases with

 the signal output power of the EDFA

 Decreases with

 Span loss
 Number of spans