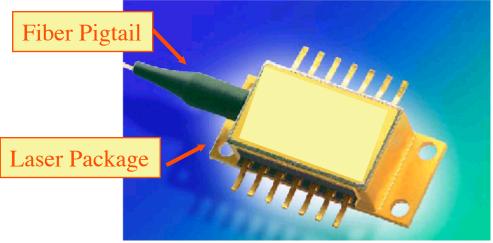
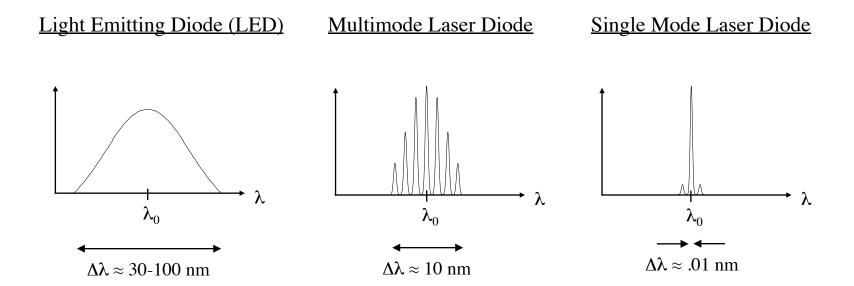
Lecture 4: Semiconductor Lasers

Semiconductor Optical Sources

- The optical sources practically used in optical communications are based on semiconductor devices
- ⇒ The generated optical signal is to be efficiently coupled to the output optical fiber
 - ⇒ Other kinds of sources (non-semiconductor) and/or free space coupling is sometimes done in R&D labs, but only for advanced and prototypal research
 - ⇒ All commercial sources comes in very compact packages, and are fiber pigtailed in the factory
 - ⇒ Pigtailing and packaging is one of the most critical and expensive issues for these devices



Semiconductor Optical Sources



The linewidth, $\Delta\lambda$, is often measured at the full width half maximum point (FWHM)

Characteristics

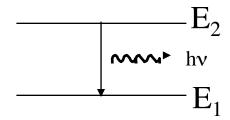
Characteristic	Description
Number of longitudnal	Number of optical frequencies laser emits. Plays a key role in both
modes	laser cost and how fiber dispersion will limit link bit rate.
Side Mode Suppression	A measure of how good a single mode laser is.
Ratio (SMSR)	
Threshold current	The minimum current required to turn on the laser. Low values are
	key to decrease transmitter power dissipation
Laser Noise	A measure of how random the optical laser output is. This
	characteristic can determine the ultimate performance of a link.
Linewidth	A measure of how noisy the laser. Plays a key role in how dispersion
	and crosstalk limits the transmission bit rate and capacity.
Wavelength	Determines the dispersion and loss operating points in the fiber and
	other network components.
Modulation Bandwidth	Determines the bit rate that can be attained by current modulation.
Chirp	A measure of how the optical output frequency changes with current
	modulation. Impacts transmission bit rate.
Linearity	Ability to reproduce and analog signal with low distortion.
Fiber Output Power	Power launched into fiber to achieve high signal-to-noise ratio.
Wavelength Tunability	The ability to tune the output wavelength over a wide range.
Long Term Stability	In terms of wavelength, output power and other key factors.

Basic Laser Theory

Optical Emission

 \Rightarrow E₂ is the bottom of the conduction band and E₁ is the top of the valance band

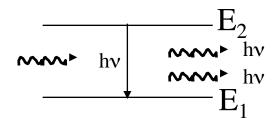
Spontaneous emission



- •Radiative recombination
- •Photon spontaneously emitted with energy

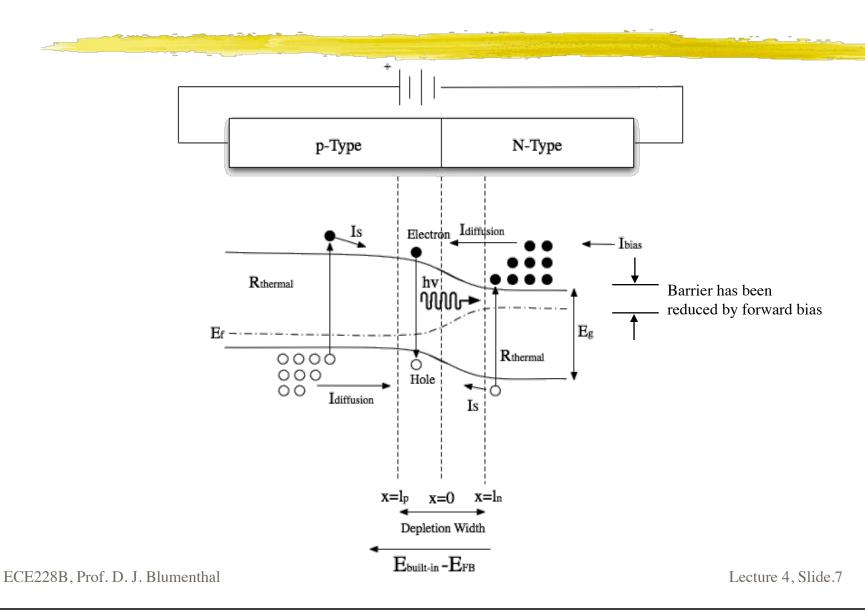
$$E_{photon} = h\nu = E_2 - E_1$$

Stimulated emission



- •Incident photon causes radiative recombination
- •Two photons with same characteristics created

Forward Biased Semiconductor p-n Junctions



Optical Gain in Semiconductors (1)

For plane wave propagation in a complex medium, with k_0 the free space wave vector and n' and n' the real and imaginary part of the refractive index respectively

$$\beta = \kappa_0 \left(n' + jn'' \right)$$

$$\kappa_0 = \frac{\omega}{c} = \frac{2\pi}{\lambda}$$

⇒ The optical gain (loss) for a plane wave propagating in a semiconductor in the z-direction can be approximated by

$$g = -\alpha = \frac{1}{I} \frac{dI}{dz} = 2\kappa_0 n''$$

Optical Gain in Semiconductors (2)

⇒ The band structure and electron probability distribution is given by

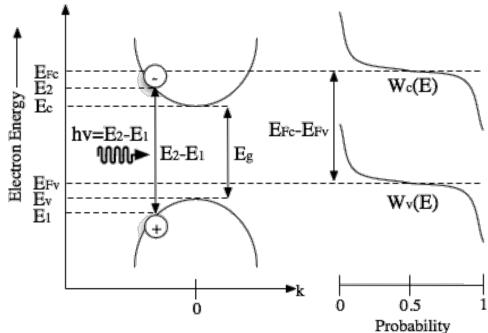
$$W_{c}(E) = \left[1 + \exp\left(\frac{E - E_{Fc}}{k_{B}T}\right)\right]^{-1}$$

$$W_{v}(E) = \left[1 + \exp\left(\frac{E - E_{Fv}}{k_{B}T}\right)\right]^{-1}$$

$$N = N_{c} \frac{2}{\pi} \int_{E_{c}}^{\infty} Z_{c}(E)W_{c}(E)dE$$

$$P = N_{v} \frac{2}{\pi} \int_{-\infty}^{E_{v}} Z_{v}(E)[1 - W_{v}(E)]dE$$
Density of states
$$Carrier density$$

$$E_{Ev}$$

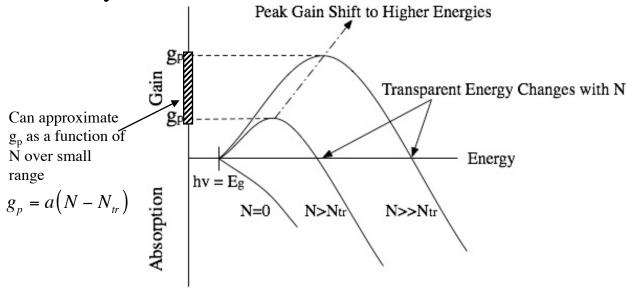


Optical Gain in Semiconductors (3)

⇒ Optical gain by stimulated emission for a photon of energy hv exceeds band to band absorption if

$$E_{Fc} - E_{Fv} \ge hv = E_2 - E_1 \ge E_g$$

⇒ The gain is wavelength dependent with a peak gain that shifts as a function of carrier density.



Optical Gain in Semiconductors (4)

 \Rightarrow The injected carrier density N is determined by the laser current *I*, the recombination rate R(N) and the active region volume V

$$I = qR(N)V$$

$$R(N) = \frac{N}{\tau_s} + BN^2 + CN^3$$

$$\tau_n = \frac{N}{R(N)}$$

where $A=N/\tau_s$ is the linear non-radiative recombination rate, B is the radiative bimolecular (band-to-band) recombination rate and C is the non-radiative Auger recombination rate

Note: We will see that while the gain is coupled to the carrier density, the carrier density is coupled to the photon density and therefore to the gain. This coupling will lead to nonlinear gain or gain saturation, as will be discussed later in the carrier rate equations.

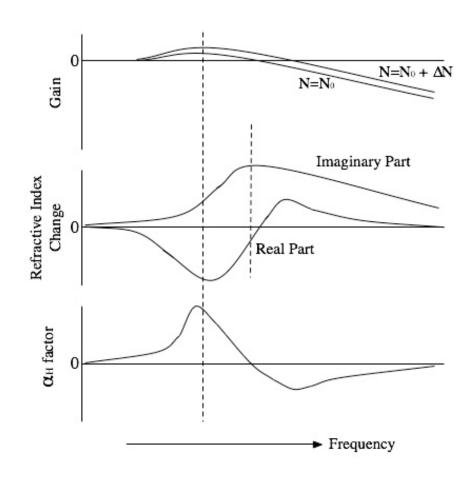
Coupling between Optical Gain and Phase

The Kramers-Kronig relations tell us that changes in the in the imaginary (Δg) and real parts of the refractive index (Δn) are related by

$$\Delta n'(\omega) = \frac{c}{\pi} P \int_0^\infty \frac{\Delta g(\omega')}{{\omega'}^2 - {\omega'}^2} d\omega'$$

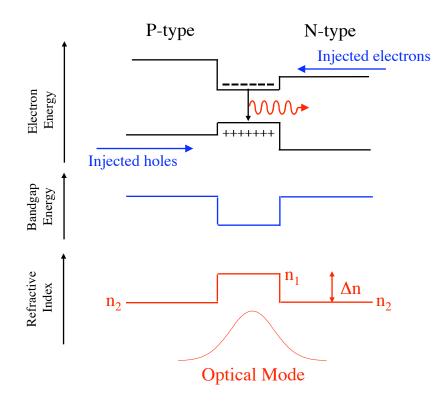
The coupling between gain and phase is described by the linewidth enhancement (or alpha) factor

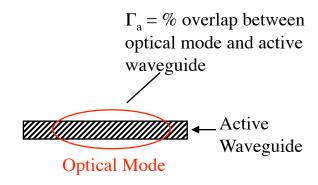
$$\alpha_{H} = -\frac{\frac{\partial n'}{\partial N}}{\frac{\partial n''}{\partial N}}$$



Optical and Carrier Confinement

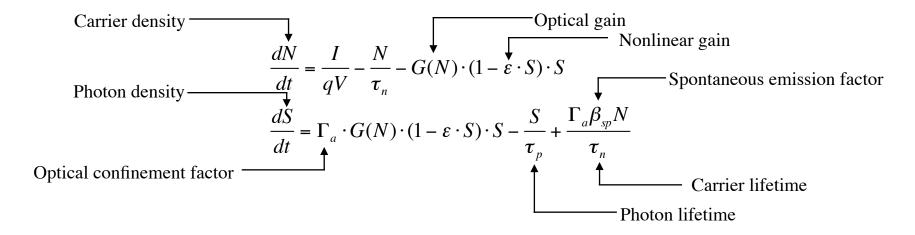
- ⇒ A heterostructure is a p-n junction between materials with dissimilar bandgaps
- Used to confine: Carriers (efficiency) and Photons (waveguide)





Laser Rate Equations

- \Rightarrow Define the laser output power P(t), the current I(t), the active gain volume V, and the carrier and photon densities N(t) and S(t) respectively.
- The dynamics of carrier and photon density in the semiconductor laser cavity is governed by couple rate equations

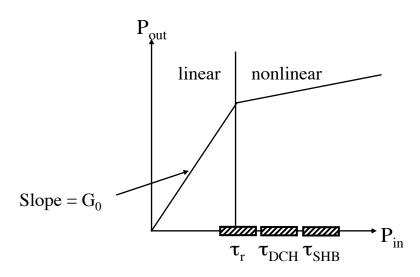


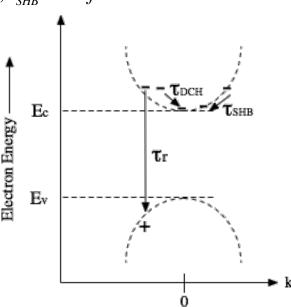
Nonlinear Gain (Gain Compression)

- Gain saturation (recovery) is governed by the rate that carriers can be replenished.
 - \Rightarrow Band to band is governed by (τ_r)
 - \Rightarrow Carriers cool from levels within band to band-edge by giving up energy to phonons (τ_{DCH})
 - ightharpoonup Carriers scatter off one another, changing momentum and energy along the band-edge (τ_{SHB})

$$\varepsilon = \frac{1}{\tau_r} + \frac{1}{\tau_{DCH}} + \frac{1}{\tau_{SHB}}$$

 $\tau_r = 1ns, \tau_{DCH} = 650 fs, \tau_{SHB} = 50 fs$





Steady State Solutions to Rate Equations

⇒ Setting the rate equations equal to zero

$$\frac{dN}{dt} = \frac{dS}{dt} = 0$$

 \Rightarrow and the cavity photon density S=0, we get the below (at) threshold condition

$$\frac{I_{th}}{qV} = \frac{N_{th}}{\tau_n}$$

$$I_{th} = \frac{qVN_{th}}{\tau_n} = qVR(N_{th})$$

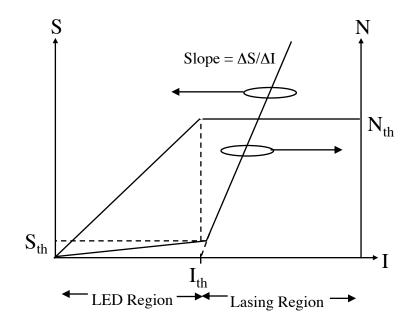
⇒ using the linear gain relation, and at threshold gain = total losses

$$N = N_{tr} + \frac{g_p(N)}{a}$$

$$N_{th} = N_{tr} + \frac{g_p(N_{th})}{a} = N_{tr} + \frac{\alpha_{total}}{a}$$

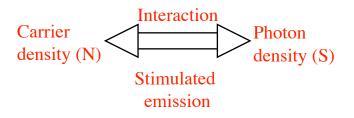
 \Rightarrow At and above threshold, with non-zero S and assuming linear operation ($\varepsilon = 0$)

$$S = \frac{I}{qVG(N_{th})} - \frac{R(N_{th})}{G(N_{th})} = \frac{I - qVR(N_{th})}{qV\alpha_{total}} = \frac{I - I_{th}}{qV\alpha_{total}}$$



Small Signal Modulation

Relaxation oscillation: Is due to an interaction between the carrier and photon density



$$\frac{dN}{dt} = \frac{I}{qV} - \frac{N}{\tau_n} - G(N) \cdot (1 - \varepsilon \cdot S) \cdot S$$

$$\frac{dS}{dt} = \Gamma_a \cdot G(N) \cdot (1 - \varepsilon \cdot S) \cdot S - \frac{S}{\tau_p} + \frac{\Gamma_a \beta_{sp} N}{\tau_n}$$

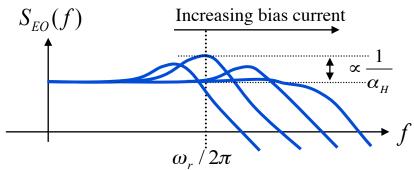
→ Define the relaxation frequency

$$\omega_r = \sqrt{\omega_n^2 - \alpha^2} \propto 2\pi \sqrt{\frac{\frac{\partial G}{\partial N}P}{\tau_p}}$$

→ Where:

 \Rightarrow α = damping constant. Increases with increasing photon density in steady state.

 $\Rightarrow \omega_r$ increases with increasing bias current.



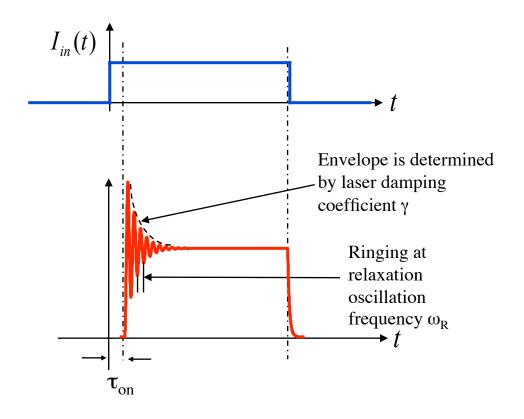
Large Signal (Digital) Modulation

- ⇒ Pulse response of a directly-driven semiconductor laser
- \Rightarrow Laser turn-on delay τ_D is determined by drive circuit/laser combination.
 - ⇒ Determined by the "zero" current level (below or above threshold)

$$\tau_{on} = \frac{\sqrt{2}}{2\pi f_r} \left[\ln \frac{P_{on}}{P_{off}} \right]$$

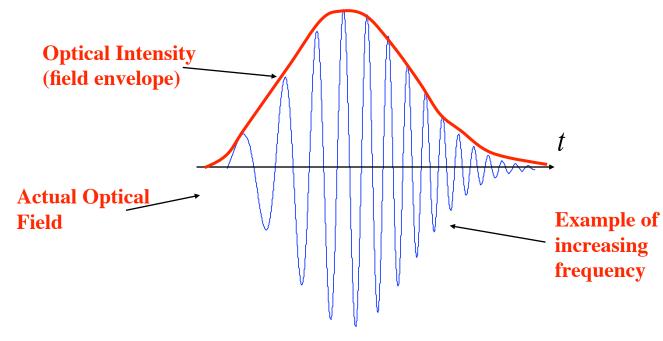
- \Rightarrow Want α to dampen out relaxation oscillation well within the bit interval.
 - Choose I_{bias} to set frequency and magnitude of relaxation oscillation relative to bit period

$$\gamma = \frac{\Gamma \varepsilon P_0}{V \eta h v}$$



Laser Chirp

- ⇒ Another important parameter is the laser frequency chirp (frequency shift)
- ⇒ Chirp will limit the bit-rate-distance product that a link can support
- ⇒ Chirp occurs when directly driving a laser, the change in carrier density changes the effective index of refraction, and thus the oscillation optical frequency
 - ⇒ This can be interpreted as a bit-synchronous phase or frequency modulation

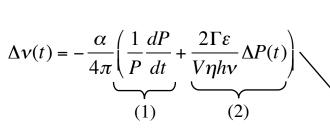


SC Laser direct modulation

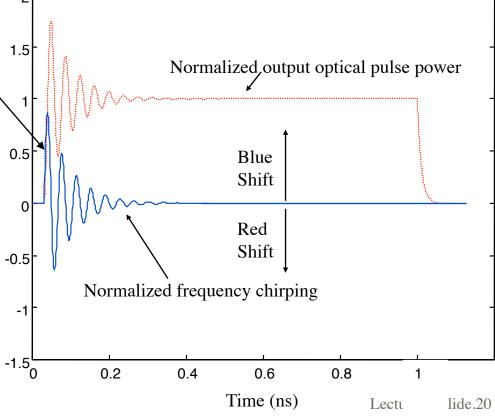
As the laser current is changed between the low and high states, the laser carrier density changes and there is a resulting time dependent phase change.

The time dependent phase changes leads to an instant frequency shift called **frequency**

chirp.



- (1) Dynamic chirp: wavelength shift associated with on-off modulation
- (2) Adiabatic chirp: Steadystate emission frequency difference between on and off states



ECE228B, Prof. D. J. Blumenthal

Multi- and Single-Mode Lasers

Fabry-Perot Cavities (1)

- The equivalent of an electronic comb filter, but for optical frequencies, the Fabry-Perot (FP) cavity is used for feedback in lasers and as optical filters
- \Rightarrow For wavelength dependent mode gain (Γg_a) and internal optical losses (α_i), define net gain g_{net} = Γg_a- α_I .
- The propagation constant for a plane wave propagating in the cavity is $\beta = \kappa_0 n'_{eff} + j \frac{g_{net}}{2}$
- The forward and backward propagating waves can be written as $S^+(z) = S^+(0)e^{g_{net}z}$

$$S^{-}(z) = S^{-}(0)e^{-g_{net}z}$$

- The phase matching condition for steady state oscillation requires all amplitudes and phases for each round trip to constructively interfere $r_1 r_2 e^{-2j\beta L} = 1$
- \Rightarrow For end mirror loss $\alpha_m = \frac{1}{2L} \ln \frac{1}{R_1 R_2}$
- The oscillation condition becomes $2j\beta L + \alpha_m L = 2j\pi N$, where N is an integer denoting longitudnal mode number
- \Rightarrow Defining cavity roundtrip gain $g_c = g_{net} \alpha_m$
- ightharpoonupThe real part of oscillation condition gives $g_c = 0$
- \Rightarrow And $\Gamma g_a \alpha_i \alpha_m = 0$

- \Rightarrow Defining the total cavity loss as $\alpha_{total} = \alpha_i + \alpha_m$
- \Rightarrow Then $g_c = g_{eff} \alpha_{total} = 0$
- ⇒ And the resonance condition for the cavity is

$$\lambda_n = \frac{2n'_{eff}(\lambda_n)L}{N}$$

$$\Delta \lambda_m = \lambda_n - \lambda_{n+1} \quad \frac{\lambda_N^2}{2n_{g,eff}L}$$

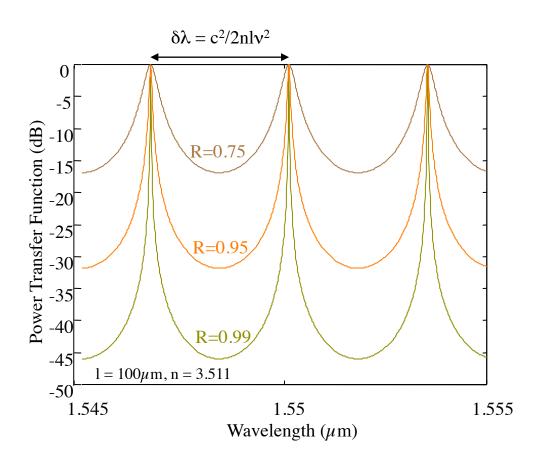
 $n_{g,eff}$ = effective group index

Cavity material with index of refraction n $P_{in}(\lambda) \qquad \qquad P_{out}(\lambda)$ Partially Partially

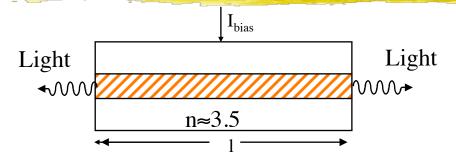
Partially reflecting mirror (R_1)

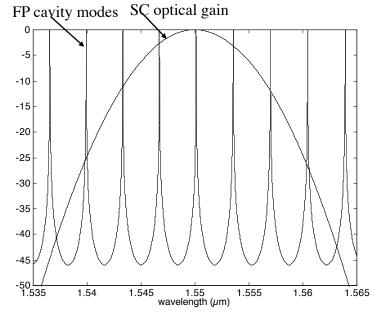
Partially reflecting mirror (R₂)

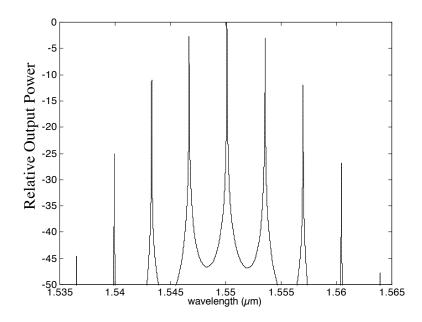
Fabry-Perot Cavities (2)



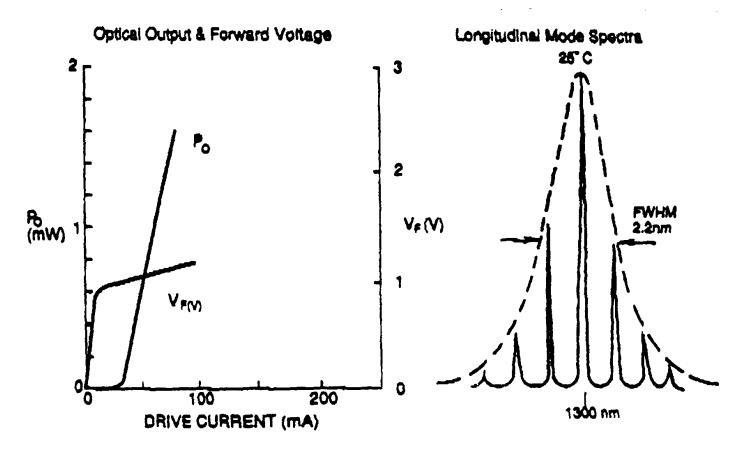
Multimode Fabry-Perot SC Lasers







FP Laser Output Characteristics



•1.3 µm multimode lasers are good for bit rates < 2Gbs and distances up to 100 km.