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Semiconductor Optical Amplifiers	



 Active waveguides fabricated in semiconductor waveguides	


 Gain usually achieved by electronic current injection	


 Can be integrated with other device structures	


 Gain is related to SC bandgap (1.55 and 1.3 micron 

wavebands)	


 Relatively broad bandwidth (30 - 100nm)	


 Fast carrier dynamics (can be advantage or disadvantage)	


 Polarization dependence is an important issues as is linear vs. 

non-linear operation	
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Semiconductor Optical Amplifiers (SOAs)	
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➯   SOA is an SC laser without 
mirrors	


➯   Optical signal experiences 
gain while traveling once 
through device	


➯   State-of-the-art amplifiers are 
polarization insensitive	


➯   Can be used for a variety of 
purposes including	



➯   Post, in-line or 
preamplifiers	


➯   Multiwavelength 
amplifiers when gain 
clamping is used	


➯   Optical wavelength 
converter	


➯   Optical modulator	


➯   Gating element in an 
optical switch	
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SOA Classes	
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Linear and Non-Linear Gain	
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SOA as an amplifier	



  Linear amplification only to avoid pattern effects (described later in this 
lecture)	



  SOAs have high gain, so making a linear amplifier is quite difficult, there 
are several approaches that are used	


  Physically tapered structure to reduce the intensity as the power increases	


  Use a very fast carrier lifetime material like a quantum dot SOA	



  In the end, in this regime we want to avoid the amplifier being saturated 
anywhere inside the amplifier	
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Time Averaged Gain	



  For an unsaturated amplifier	



  Can be approximated by	



  We can define the amplifier material 
bandwidth as	



  And the amplifier bandwidth using G
(ω) = exp[g(ω)L]over the length L 
(treating as lumped)	
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Lumped vs. Distributed Models	



  Lumped	


  Carrier density averaged over amplifier 

length	


  Analytic expressions obtainable	


  n(λ,t) is independent of z	


  Analytic expression do not predicted 

behavior that depends on z varying n.	


  Distributed	



  Amplifier discretized into N sections, 
each of length Δz with ni(λ,t) averaged 
over Δz.	



  Analytic expressions difficult	


  Requires numerical modeling	


  n(λ,t, z)	


  Predicts z dependent behavior	



  Frequency response	


  Wavelength dependent gain	
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z-Dependence of Carrier Lifetime and 
Gain Saturation	



  Both the carrier lifetime (effective) and the optical signal power relative to gain 
saturation can change as a function of z!	



  Define an effective time constant	
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Small Signal Frequency Response	



  Depends on evolution of teff as signal propagates through amplifier	


  Depends on time average photon density at location z	


  Depends on amplifier Psat	


  Depends on input power and wavelength	


  Depends gain profile at each section	



At output, linear operation only	

 At output, nonlinear operation	
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Amplified Spontaneous Emission (ASE)	
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Amplifier Noise	



  Noise figure is defined as	



  Assuming the amplifier output is G times the input power, the SNR at the input is given by	



  At the amplifier output, assuming white additive noise	



  Output SNR can be written as	



  And the noise figure as (for large G)	
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Gain Ripple	



  We define the flatness of the gain over the gain bandwidth as (chip gain G 
and facet reflectivity R)	



Ripple =
1+GR( )2

1!GR( )2
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Cumulative Distributed Gain	



  Total gain-wavelength dependence 
is function of	


  Input power and wavelength	


  Amplifier saturation power as a 

function of wavelength	


  Amplifier bias	


  Amplifeir design parameters 

(geometrical and physical)	

 Pin(!)

Pout(!)
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Gain Compression and Recovery	
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Pattern Dependent Gain	
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Crosstalk	



  Intersymbol interference due to finite gain recovery at high bit rates	


  Intermodulation distortion in a multichannel WDM or OFDM transmission 

system due to FWM products.	


   Intersymbol interference in a multichannel OFDM transmission system 

due to SPM or CPM.	




