

# Lecture 13: Optical Combiners, Filters, Multiplexers, AWGRs and Switches

## **Optical Couplers**

#### **Directional Coupler**



 $T_{11}(\lambda)$  is the power transfer function from input 1 to output 1.  $T_{12}(\lambda)$  is the power transfer function from input 1 to output 2.  $\kappa$  is a function of the waveguide geometry, separation and physical parameters

**Example:** For  $\kappa l = (2m+1)\pi/4$ , and m is a nonnegative integer, power at the input will be split evenly between the two output ports. This is also known as a 3-dB coupler. Note that for a signal incident at one input the signals at both outputs will have a  $\pi/2$  relative phase shift.

#### N x N Splitters and Combiners

 $\Rightarrow$  Important rule for optical splitters 1xN and combiners Nx1

⇒ If the device is <u>frequency and polarization independent</u>, the power loss is at least equal to 1/N



#### 1xN Splitters and Combiners



Integrated optic 1xN device layout

Optical beam propagation simulation showing beams (red) directed from input port to output ports



ECE228B, Prof. D. J. Blumenthal

Lecture 13, Slide 4

## Splitter/combiner typical characteristics

 $\Rightarrow$  The excess loss is of the order of 1 dB

- $\Rightarrow$  Commercial devices are available up to 16 ports
- $\Rightarrow$  Polarization dependent loss may be as low as 0.2 dB
- ⇒ Standard devices show partial frequency dependence (1-2 dB over the 30nm C-band)
- ⇒ Ultra-flat devices (over more than 30 nm) are available
- $\Rightarrow$  1x2 splitters with different splitting ratios
  - $\Rightarrow$  50/50 splitters (3 dB couplers)
  - $\Rightarrow$  10/90, 5/95, 1/100 splitters (sometimes called "optical taps")

#### Wavelength Filters and Multiplexers



## Wavelength Filters and Multiplexers

#### ⇒ Desirable Characteristics

- ⇒ Long term frequency stability and accuracy (low temperature sensitivity)
- Flat passband function (important for cascading filters and tolerance to channel drift and misalignment)
- $\Rightarrow$  Low crosstalk
- ⇒ Polarization independent
- $\Rightarrow$  Low polarization mode dispersion (PMD)
- ⇒ Low insertion loss and polarization dependent loss (PDL)
- $\Rightarrow$  High return loss
- → High resolution for DWDM systems
- $\Rightarrow$  Large free spectral range (FSR) for most applications

#### Wavelength Filter Passband Characteristics



Wavelength

### Fiber Bragg Gratings (FBG)



#### Bragg Grating Filter Transmission



ECE228B, Prof. D. J. Blumenman

Lecture 13, Slide 10

#### Tunable FBGs for ROADM



#### Fabry-Perot Filters

⇒ Can be tuned to a different wavelength by adjusting the cavity length (e.g., by piezoelectric crystal. High loss, polarization dependence and sharp passband limit use as WDM filter.



#### Multilayer Dielectric Thin-Film Filters (TFF)

DTMFs can be designed to have flat passbands, low lows, low PDL and polarization sensitivity as well as sharp frequency rolloff.



#### Acoustooptic Tunable Filters

Medium loss (greater than 6 dB)
High PMD and PDL, polarization diverse architectures necessary
Multichannel crosstalk issues



#### Mach-Zehnder Interferometer Filters

Single Stage (can separate 1.3µm from 1.55µm)



#### Multi Stage (for narrow passband)



#### Arrayed Waveguide Grating Router (AWGR)



Wavelength  $\lambda$  will be "routed" from input *i* to output *j* if it satisfies the following equation:  $n_1 \delta_i^{\ in} + n_2 \Delta L + n_1 \delta_j^{\ out} = p\lambda$  (for integer p)

Lecture 13, Slide 16

### Rowland Circle Construction

#### $\Rightarrow$ Used in the design of AWGRs



#### Conclusions on filters

- Optical Filters, demultiplexers and demultiplexers have reached a very high level of reliability
  - $\Rightarrow$  They are widely used in WDM applications
  - $\Rightarrow$  Have application in dispersion compensation
- $\Rightarrow$  The issue of fast (µs) tunable filter is still an open issue
  - $\Rightarrow$  AOTF, though very promising, has not reached a total maturity
- ⇒ Slowly (ms) tunable filters are now available
  - ⇒ Based on mechanical movements of a grating or an external cavity mirror

#### **Optical Isolators**

#### $\Rightarrow$ Optical equivalent of a diode

- ⇒ Used to prevent back reflections from fiber/air or fiber/semiconductor interfaces.
- ⇒ Reflections can cause instability in SC lasers and increase interferometric noise.
- $\Rightarrow$  Typical specifications : Low loss = insertion loss ~1 dB.
  - High loss = Return loss 40 50 dB.



#### Polarization independent optical isolators



#### **Optical Circulators**



#### Optical Switch Technology Switching Speed and Port Count



#### Photonic Crossconnects



# Photonic Crossconnect Technologies

- 2D:
- Wavelength routed
- Bubble (Total internal reflection)
- Thermo-optic (Glass or silicon)
- Electro-optic
- LiNbO3, InGaAsP, GaAs, Liquid Crystal
- Mach-Zehnder, Fabry-Perot, Michelson Interferometers
- Acousto-optic
- Gain (splitter with gain on each arm)
- Er:SiO2, InGaAsP
- MEMS (MicroElectroMechanical Systems)
- 3D:
- MEMs

#### **Optical Space Switches**



### Thermo-Optic Switches

- 2D so small switches are best (<32 ports)
- Power consumption (0.5 W per switch)
- Speed (typically 6-8 ms)
- Loss (1 dB/cm typical)
- Size: 4" wafer for 16x16 switch





NTT 8X8 thermo-optic switch

#### Micro Electro-Mechanical Switches - MEMS

- Micromachines are miniature machines built in ways similar to the way an integrated circuit is built.
- By patterning various layers of polysilicon as they are deposited, one can build structures which look like those shown below
- After the release step in which part of the structures are etched away, the devices are capable of motion



http://www.bell-labs.com/org/physicalsciences/projects/mems1.html

#### 2D MicroElectroMechanical Systems (MEMS) Mirrors

- Low loss for small sizes (< 32x32)
  - Low PDL and PMD
  - Digital operation
- Sticking due to friction an issue





L. Lin, "Free-Space Micromachined Optical-Switching Technologies and Architectures," Topical Meeting on Photonics in Switching, Santa Barbara, CA (1999)

# **3D MEMS Switch**

- N ports 2N switches >
- Two planes of N mirrors are needed.



#### AOTF Multichannel OADM



Fulvio Arecco, Danilo Scarano and Steffen Schmid ECOC 1998

# Agilent Bubble Switches





- No moving parts. Ink jet technology
- 2D so small switches (<40 ports) are best
- Wavelength range: limited
- Power consumption: heater power significant

#### Tunable Laser Technology

#### Medium to Fast Tuning: Multisection Semiconductor Lasers



Lecture 13, Slide 32

### Wavelength Switch/Router



## Wavelength Interchanger



#### Time Switches

#### **Random Access Memory**

**Storage Loop** 





#### Switched Delay Lines

- $\Rightarrow$  Switching fabric (R. Thompson, JLT)
- ⇒ Resolve NxN switch output port contention (D. K. Hunter, JLT, 1993)
- ⇒ Resolve internal blocking states, shared buffers (Boncek, Electron. Letts)
- ⇒ Resolve wavelength switching conflicts (Kazovsky, CORD, PTL, 1995)
- ⇒ Homodyne coherent crosstalk (M. Tur, Optics Letts., 1995)



#### Mixed Switching Fabrics

**Space/Wavelength** 

**Space/Time** 

Space

Switch

4 3 2 1

4

 $\overline{}$ 

 $\mathbb{C}$ 

 $\square$ 

 $\square$ 

Fiber



Wavelength Demultiplexer

Wavelength Multiplexer





 $\begin{array}{c|c} 2x2 \\ switch \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} 2x2 \\ switch \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} 2x2 \\ switch \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} 2x2 \\ switch \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} 2x2 \\ switch \\ \hline \end{array} \\ \hline \end{array}$ 

#### Integrated Optic Space Switches



## Sources of Optical Crosstalk

- ⇒ Crosstalk is generically a superimposition of two different useful signals
- $\Rightarrow$  It may be due to:
  - ⇒ Reflections and Recirculatory Paths
  - ⇒ Fiber and Amplifier Nonlinearities
  - ⇒ Photonic Switching and Gating Elements
  - ⇒ WDM Add/Drop Components
  - ⇒ WDM Multiplexers/Demultiplexers
- ⇒ In traditional point-to-point link without optical add-drops, crosstalk mainly comes from nonlinear effects
- ⇒ In next-generation all optical network, it can be generated by any device that handle the signal in the photonic domain

## Digital Optical Crosstalk

Do signals from different optical digital sources mix incoherently or coherently ?

> Coherence determined by the rate of <u>random laser phase</u> fluctuations relative to the observation interval

> The observation interval is determined by the <u>bit rate</u>



Assume  $\phi_i$  and  $\Delta \phi$  uniform distributed on [0,2 $\pi$ ] ECE228B, Prof. D. J. Blumenthal

Lecture 13, Slide 40

#### Incoherent and Coherent Crosstalk



#### Acceptable Crosstalk levels

- Incoherent crosstalk can in most cases be kept under control with good optical filtering at the receiver
- ⇒ Coherent crosstalk may easily become detrimental
  - ⇒ The coherently interfering channels should be at least 30 dB smaller than the useful channel
  - Note that in mesh configuration, coherent crosstalk may be generated by the interaction of a signal with a delayed version of the same signal, that has followed another path



Received eye diagram from strong coherent crosstalk levels

ECE228B, Prof. D. J. Blumenthal