Lecture 1: Overview of Optical Communications Links and Intro to Photodetection

Overview of Optical Communications Links

ECE228B, Prof. D. J. Blumenthal

Fiber-Optic Network Applications

3

Years

5

ECE228B, Prof. D. J. Blumenthal

Technology Push and Integration Trends

Power and Size: The Next Frontier

ECE228B, Prof. D. J. Blumenthal

cisco

The Power Bottleneck

Maximum configuration: 92Tbps → 72 x LC chassis + 8 x Fabric chassis

- Transistors power dissipated on every bit
 - ⇒ Faster frequency more power dissipated
 - Power scales linearly with message length
 - \Rightarrow Regenerative technology
- \Rightarrow Optics
 - \Rightarrow Pay initial bias power price
 - ⇒ Faster data frequency does not add power (due to data relative to carrier frequency)
 - ⇒ Switching on boundaries only
 - \Rightarrow Loss and SNR is key issue
 - \Rightarrow Regeneration

Shortfall is overcome by architectural innovation and trading off: Performance, functionality, programmability, physical size/density → Very hard to sustain long-term

From Garry Epps, Cisco Systems

Transmission Bandwidth Evolution

Evolution of Fiber-Optic Point-to-Point Transmission

Early 70s Room temperature GaAs LEDs and multimode FP Lasers @ 830 nm	1	Multimode Fabry-Perot 1310 nm lasers	Development of single frequency DFB 1310 nm and 1550 nm lasers	New disp shifted fit yields Zer dispersion 1550 nm dB/km lo 1310 nm	ersion per ro n @ and 0.5 ss @	Mi Mu WD Nur cha cha limi four (FW	d 90s ltichannel DM @1550 nm. mber of nnels and nnel spacing ited by fiber r-wave mixing VM)	Mid 90s Optical Solitons, dispersion compensation
Multimode fiber-optic waveguides >5dB/km attenuation	ltimode r-optic /eguides IB/km nuation Low loss Single mode optical fibers 1 dB/km @ 1310 nm Early 80s		Operation in the low loss window of 0.2 dB/km @ 1550 nm but high dispersion @ 1550 nm Mid to Late 80s		Multichannel erbium doped fiber amplifiers (EDFAs) @ 1550 nm deployed. Late 80s to Early 90s		AT&T True Wave Fiber and Corning Large Optical Core Fiber reduce fiber FWM	

L.

DWDM Link Evolution

Basic Fiber Optic Point-to-Point Link

Basic Communication System

<u>Block Coding</u> •Error Correction •Redundancy •Overcome noise and transmission impairments •E.g. FEC, Turbo-Codes

Line Coding •DC balance •Redundancy •E.g Manchester Codes

ECE228B, Prof. D. J. Blumenthal

Link Capacity and Spectral Efficiency

- Capacity of an optical communications channel is the maximum bit rate that can be transmitted without error for a given noise, bandwidth and power.
- Capacity can be calculated independent of modulation, coding or decoding technique
- For a WDM (Wavelength Division Multiplexed) optical communications system

S = Spectral Efficiency = $\frac{\text{Capacity per Channel}}{\text{Channel Spacing}} = \frac{C}{\Delta f} = \frac{\text{Bits/Second}}{\text{Hz}}$

Signal to Noise Ratio (SNR)

ECE228B, Prof. D. J. Blumenthal

Multiplexing Techniques

ECE228B, Prof. D. J. Blumenthal

Multiplexing Techniques

- Multiplexing is the technique used to carry several different information channels on a common physical medium. The standard techniques are:
 - ⇒ Time Division Multiplexing (TDM)
 - ⇒ Frequency Division Multiplexing, indicated as "Wavelength Division Multiplexing" (WDM) in optics
 - \Rightarrow Space Division Multiplexing (SDM)
 - \Rightarrow Code Division Multiplexing (CDMA)
 - ⇒ Multilevel coding

Time Division Multiplexing (TDM)

Wavelength Division Multiplexing (WDM)

Wavelength/Subcarrier Multiplexing

Optical Modulation

ECE228B, Prof. D. J. Blumenthal

Modulation Basics (I)

⇒ Define

- \Rightarrow R_b = bit rate = bits/second
- ⇒ R_c = added redundancy per bit to improve SNR = baud = symbols/second
- \Rightarrow B = occupied bandwidth per channel
- \Rightarrow M = number of points in signal constellation
- ⇒ Binary Modulation
 - \Rightarrow One bit per symbol
- ⇒ Non-Binary Modulation
 - \Rightarrow More than one bit per symbol
- \Rightarrow No inter-symbol interference (ISI)

 $\Rightarrow R_s \leq B$

 \Rightarrow Error correction

$$\Rightarrow R_c \leq 1$$

 \Rightarrow No error correction

$$\Rightarrow R_c = 1$$

Information bit rate per channel in one polarization state

$$R_b = R_s R_c \log_2 M$$

Binary Intensity Modulation

⇒ The primary modulation format used for commercially deployed optical systems are intensity modulation (optical power modulation)

Optical spectrum for intensity modulation

⇒ If the intensity modulation is imposed to the optical signal together with unwanted phase or frequency modulation (e.g chirp under direct laser modulation, excess laser phase noise)

 \Rightarrow The resulting optical spectrum is larger than the bit rate

- ⇒ If the modulation is a (nearly) pure intensity modulation, without any accompanying phase/frequency shift (e.g. external modulation)
 - ⇒ The resulting spectrum has a primary lobe that occupies the order of the bit rate

Coherent Binary Modulation

Binary Signal Constellations

Two-Level PSK

$$\begin{split} M &= \text{average power in 1 bit} \\ \sigma_0 &= \text{variance of signal independent noise} \\ P_s &= \text{average signal power} \\ P_{LO} &= \text{average local oscillator power} \\ T &= \text{bit period} \end{split}$$

ECE228B, Prof. D. J. Blumenthal

Quadrature Multi-Level Modulation

- ⇒ Both optical phase and amplitude can be used to code symbols per bit
- N-ASK is N-level amplitude shift keying (generalization of ASK): along amplitude axis
- ⇒ N-PSK is N-level phase shift keying (PSK): along phase axis
- ⇒ N-QAM is quadrature amplitude modulation: 2D in amplitude and phase
- ⇒ Receiver must isolate one point in constellation per bit
- ⇒ Noise makes more difficult to isolate symbol (SNR)
- ⇒ 2-D space can be increased to 3 and 4-D by allowing temporal modulation of phase and amplitude

Photodetection

ECE228B, Prof. D. J. Blumenthal

Detection of Optical Signals

- ⇒ Thermal: Temperature change with photon absorption
 - ⇒ Thermoelectric
 - ⇒ Pyromagnetic
 - ⇒ Pyroelectric
 - \Rightarrow Liquid crystals
 - ⇒ Bolometers
- ⇒ Wave Interaction: Exchange energy between waves at different frequencies
 - ⇒ Parametric down-conversion
 - ⇒ Parametric up-conversion
 - ⇒ Parametric amplification
- ⇒ Photon Effects: Generation of photocarriers from photon absorption
 - ⇒ Photoconductors
 - ⇒ Photoemissive
 - ⇒ Photovoltaics

Photon Statistics

 \Rightarrow Photon sources can in general be characterized as coherent or incoherent[†]

- ⇒ Coherent: Probability that a photon is generated at time t₀ is mutually independent of probability of photons generated at other times (Markov Process)
 - \Rightarrow Poisson Process: Probability of finding *n* photons in time interval *T*
 - ⇒ Bunching is a trait of the Poisson process
 - ⇒ Interarrival time is decaying exponentially distributed

† Can also be a combination of these two types -> partially coherent

Where :

P(n|T) is probability of finding n photons in time interval T R is mean photon arrival rate (photons/second)

Photon Statistics (II)

⇒ Narrowband Thermal (Gaussian):

 \Rightarrow Bose-Einstein Process: Probability of finding *n* photons in time interval *T*

Where :

$$\begin{split} P(n) &= \text{probability of finding n photons given} \\ n_b &= \text{mean number photons from incoherent source} = N_0 / h v_0 \\ N_0 &= \text{spectral density of source} = P_{opt} / B_0 \\ P_{opt} &= \text{total optical power from source} \\ B_0 &= \text{source optical bandwidth} \\ T &= \text{observation time} \leq 1 / B_0 \end{split}$$

Detecting Photons (1)

- \Rightarrow Any material that can respond to single photons can be used to count photons
- \Rightarrow Ideal Detector
 - ⇒ Generation of a electron-hole pair per absorbed photon results in an instantaneous current pulse

Detecting Photons (2)

\Rightarrow Real Detector

- ⇒ Has an inherent "impulse response," $h_d(t)$, due to built in resistance and/or capacitance.
- \Rightarrow Can be modeled as an RC filter with low pass response

Detecting Photons (3)

- ⇒ As the average photon rate increases, the observed photo-current starts smoothing out, with a variance around the mean (average) count that is based on the statistics (which tends to Gaussian for large photon arrival rate)
- \Rightarrow P(i) is the probability function of measuring the current at a certain value at time t.

