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Lecture 5: Single Mode Laser 
Designs	
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Side Mode Suppression Ratio SMSR (1)	

  The output optical spectrum of a laser can contain one or many frequencies	

  For high performance communications (2.5Gbps and higher), it is important to use lasers that emit 

primarily at one frequency (wavelength). 	

  The SMSR is a standard measure of how single frequency is a laser is	

  Consider the following symmetrical model for a semiconductor gain medium embedded in an optical 

resonator where the gain peak is aligned with one of the resonator modes	
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Side Mode Suppression Ratio SMSR (2)	

  Consider the time-averaged (Stationary) optical power  for the dominant mode (N) and second most 

dominant mode (N+1)	


dSN
dt

= 0 = !a "GN (N ) " (1# $ "SN ) "SN #
SN
% p

+
!a&spN
% n

dSN +1
dt

= 0 = !a "GN +1(N ) " (1# $ "SN +1) "SN +1 #
SN +1
% p

+
!a&spN
% n

  The SMSR is defined as	


SMSR =
SN
SN +1

  For a gain spectrum much larger than the cavity mode spacing, assume there is minimal wavelength 
dependence to the last term in the rate equations (assuming non-linear gain is zero) 	


SMSR =
SN
SN +1

=
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Mode Selectivity	

  For single mode operation in a digitally modulated laser, numerical simulations of multi-mode rate 

equations show that the dominant mode gain must exceed gain of all other modes by order 5 cm-1. 	


!gc = SMSR
nsp
2
h"vg#m # i +#m( ) 1

Poff

  Where nsp is the spontaneous emission factor, vg is the mode group velocity and Poff is the power in a 
“zero” bit	


  Example: SMSR = 100; nsp = 3; hv = 0.8eV;  vg = c/neff = 3x108/4; αm = αi = 30 cm-1; Poff=0.025mW	

  Δgc = 10cm-1	


  Note: In practice it is very difficult to get (and keep) the gain peak aligned with a cavity resonance, so the 
SMSR not only decreases, but the laser can be unstable between two modes that are competing for the 
gain.	
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Periodic Index Structures (1)	

  Many of the SML lasers in use today rely on some form of periodic structure to create a wavelength 

dependent loss designed to allow only one mode to dominate and a large resulting SMSR	

  Examples include Distributed Bragg Reflector Laser (DBR) and the Distributed Feedback Laser (DFB)	


  A periodic structure is defined as where the index of refraction varies periodically in the direction of 
propagation only	


n(z) = neff
' +

!n
2
cos(2"0z)

Ex: neff = 4; Δn = 5%	


  The Bragg period of the structure is defined as Λ = Mπ/β0, with M an integer. For M=1 (first order 
structure), the free space Bragg wavelength can be used to describe the Bragg period	


! =
"B
2neff

'
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Periodic Index Structures (2)	


  Defining the grating vector (related to the periodic structure) kg = 2π/Λ and the coupling coefficient κ, the 
wave equation for a field with free space propagation constant (k0 = 2π/λ) propagating in the periodic 
medium is	


d 2E
dz2

+ n(z)k0[ ]2 E = d
2E
dz2

+ neff
' +

!n
2
cos 2"0z( )#

$%
&
'(
k0

)

*
+

,

-
.

2

E = 0

d 2E
dz2

+ k0
2 neff

2 + neff
' !ncos 2"0z( )( ))* ,-E =

d 2E
dz2

+ " 2 + 4"/ cos 2"0z( ))* ,-E = 0

/ =
0!n
21

  Consider wavelengths λ  close to the Bragg wavelength λΒ such that β = β0 + Δβ and Δβ << β0	


  Using the picture below, we describe the forward and backward propagating waves by	


E(z) = R(z)exp(! j"0z) + S(z)exp( j"0z)

Λ	


R(z)exp(! j"0z)S(z)exp( j!0z)

β0	
-β0	
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Periodic Index Structures (3)	


d 2 R(z)exp(! j"0z) + S(z)exp( j"0z)[ ]
dz2

+ " 2 + 4"# cos 2"0z( )$% &' R(z)exp(! j"0z) + S(z)exp( j"0z)[ ] = 0
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!"0
2R(z)exp(! j"0z) ! "0
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exp(! j"0z) " 2 ! "0

2( ) ! 2 j"0 (R (z) + 4"# cos 2"0z( )R(z)$% &' + exp( j"0z) " 2 ! "0
2( ) + 2 j"0 (S (z) + 4"# cos 2"0z( )S(z)$% &' = 0

" 2 = "0
2 + )" 2 + 2"0)" * "0

2 + 2"0)"

exp(! j"0z) 2"0)" ! 2 j"0 (R (z) + 4"# cos 2"0z( )R(z)$% &' + exp( j"0z) 2"0)" + 2 j"0 (S (z) + 4"# cos 2"0z( )S(z)$% &' = 0

  Inserting the backward and forward propagating field into the wave equation with periodically varying 
index of refraction	


  Which can be described by the coupled-mode equations	


!R (z) + j"#R(z) = $ j%S(z)
!S (z) $ j"#S(z) = j%R(z)
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Solution to Coupled Mode Equations (1)	


  The coupled mode equations and wave equation describe the field in the periodic index structure.	

  Assuming there are boundary conditions (e.g. R(0) and S(0) are known), we can write the fields as	


R(z) = cosh ! z( ) " j#$
!

sinh ! z( )%

&
'

(

)
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!
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  Where we have defined the matrix Fper(L) and γ2=κ2-Δβ2 	

  Note that Fper relates the right and left propagating waves at the left side (z=0) of the periodic index 

structure to the right and left propagating waves a the right side (z=L) of the structure.	
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Solution to Coupled Mode Equations (2)	


  We can define the field reflection coefficient rper and the power reflection coefficient Rper at z=0 as	


 

rper =
S(0)
R(0)

=
!
j"
#

sinh # L( )

cosh # L( ) + j$%
#

sinh # L( )&

'
(

)

*
+

,
! j"L
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2
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"L( )2 sin2 -L( )2
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! "L( )2 , for -L "L
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! "L( )2 , for -L "L

.

/
00
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0
0

  Where the final simplification for rper is for κL very close to ΔβL	

   Note that 	


  | rper| increases with increasing κL which means a higher coupling coefficient leads to a stronger 
reflection.	


  | rper| decreases with increasing ΔβL which means the reflection becomes smaller when the 
wavelength moves away from the Bragg reflection peak.	


  The reflection experiences a π/2 phase shift when Δβ = 0.	
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Distributed Bragg Reflector (DBR) Lasers (1)	


Bragg Grating = wavelength 
dependent mirror	


DBR Principle	


Butt-Joint DBR	


  Bragg reflector acts as wavelength dependent mirror	

  Long gratings and weak coupling coefficient realizes a mirror with high reflectivity and  

narrow reflection peak (spectrum)	

  The gain condition  and net modal gain can be written as	
 R1Rper exp(2gnet LA ) = 1

gnet =
1
2LA

ln 1
R1
+ ln 1

Rper

!

"
#
#

$

%
&
&

Power that leaves active 
region at z=0	


Lasing quality depends strongly 
on quality of interface	
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Distributed Bragg Reflector (DBR) Lasers (2)	

  To understand how the reflectivity varies as the wavelength shifts away from the Bragg 

wavelength, we introduce the normalized parameter	


!" = " # "0 =
2$ %neff (&)

&
#
2$ %neff (&B )

&B
'
2$ng
&B
2 !&

ng =
d k0 %neff( )
dk0

&N

  At wavelengths near the Bragg wavelength, a periodic structure of length L, and an incoming 
field of magnitude R(0) at z=0 and S(L) = 0 at z=L	


R(z) =
cosh ! z " L( )( )
cosh !L( )

R(0)

S(L) =
j sinh ! z " L( )( )
cosh !L( )

R(0)

R(z) 2 " S(z) 2 = R(L) 2



ECE228B, Prof. D. J. Blumenthal	
 Lecture 5, Slide 12	


Distributed Bragg Reflector (DBR) Lasers (2)	


  At the Bragg wavelength, Δβ=0, which means γ = κ, and the reflectivity only depends on κL	


rper =
S(0)
R(0)

=
! j sinh "L( )
cosh "L( )

= tanh "L( )

Rper = rper
2
= tanh2 "L( )

Greater than or equal to 
cleaved facet	


  If we now look at the reflectivity as a function 
of wavelength offset from the Bragg 
wavelength as a parameter of κL. The 
reflectivity function is periodic with nulls at 
(assuming ΔβL> κL)	


  The reflection bandwidth for the Bragg mirror 
is	


 
!"L = #L( )2

+ N$( )2 , for N = 1,2,K,

!"r =
"B
2#

$ng,eff
=
"B!n
2ng,eff
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Distributed Bragg Reflector (DBR) Lasers (3)	


  Recall that in this design the Bragg mirror is only one of the mirrors. The other mirror is a 
broadband FP type mirror. There are designs where a Bragg mirror is used for both mirrors.	


  A key question is then, how many FP modes are there within the primary reflection mode of 
the Bragg mirror? If there is more than one, then we will not have a single mode laser	


  Lets plug in the coupling coefficient into the standard mode spacing equation for a FP laser	


  Single mode operation occurs when only one cavity mode fits under the Bragg reflector 
bandwidth, or	


!"m =
"2

2ng,eff L
>

"B
2#

$ng,eff
= !"r

!L < " 2
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Distributed Feedback (DFB) Lasers	


  DFB lasers employ Bragg mirrors. The mirror is “distributed” through the laser gain medium 
instead of at the ends like with DBR lasers.	


  First consider the case of  a DFB laser with non-reflecting facets (e.g. semiconductor facets are 
highly AR coated)	


  To allow for the presence of gain, 
we need to modify Δβ  with Δβ 
+jg0. In this example there are no 
mirrors, so the matrix Fper 
describes the fields and the 
oscillation condition for lasing is 
(Fper)22 = 0.	
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!
sinh(! L)
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cosh(! L) +
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!
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Distributed Feedback (DFB) Lasers	


  The wave equation sets the relation between gain and the distributed mirror parameters as	


! 2 =" 2 # ($% + jg0 )
2

  And the oscillation condition can be written as	


! L coth(! L) = " j(#$L + jg0L)

  The gain and phase for the DFB are tightly coupled in contrast to the FP laser. The complex 
number in the above equation determines the gain and phase. The coupling coefficient and 
length together determine the possible values for ΔβL and g0L. The oscillation condition will 
yield a set of solutions, each with a wavelength (given by Δβ)  and gain for that wavelength 
(given by g0). 	



