
Lecture 8: Intro to Optical Amplifiers

1R Optical Regeneration

- ⇒ Analog amplification
- ⇒ Faithfully reproduces input signal with minimal distortion
- ⇒ Can be used as a linear repeater by periodically boosting optical power
- ⇒ Can be used in nonlinear region as a level clamping amplifier
- ⇒ Single amplifier can be used as a multichannel amplifier, ideally with minimal crosstalk and distortion

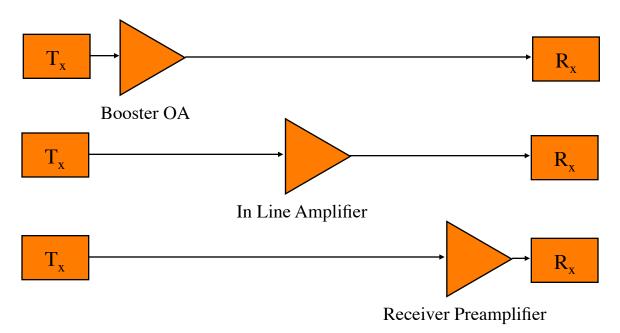
Waveband Operation

OA Figures of Merit and Design Parameters

Figure of Merit	Design Parameter		Impact
Unsaturated Gain (G ₀)	Pump Power		Sets the number of photons available for gain, increase in G_0 with increased pump power but
			reaches an asymptope
	Erbium Doped Fiber		Increased G ₀ with increased length for
	Length		moderate pump power
Gain Flatness	Operation in Saturation	•	Higher F _n at shorter wavelengths
		•	Gain sensitivity to channel add/drop
	Erbium Doped Fiber	•	Optimal length for pump and signal powers
	Length		
Noise Figure	Co-Propagating pump	•	Lower F _n than counter-Propagating
(F_n)	Counter-Propagating Pump	•	Higher F _n than co-Propagating
	Erbium Doped Fiber	•	F _n increases with increase in fiber length
	Length		
	Pump Power	•	F _n decreases with increase in pump power
Maximum	Erbium Doped Fiber	•	
amplifier output	Length		
power (P _{out,max})	Pump Power	•	P _{out,max} increases with increased pump power

1R Optical Regeneration

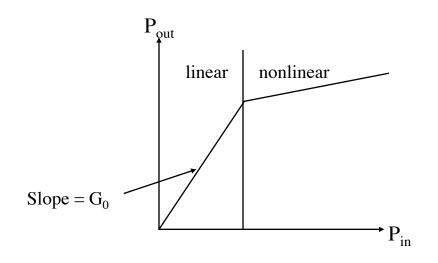
⇒ 1R = Optical Analog amplification, without reshaping or retiming

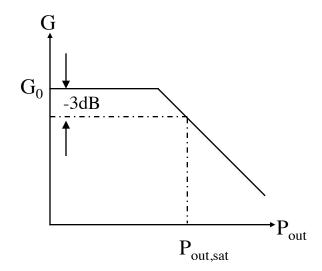

$$E_{out}(t) = G \cdot E_{in}(t) + n(t)$$
Amplifier optical Gain
Amplifier emitted optical noise

- ⇒ Faithfully reproduces input signal with minimal distortion
- ⇒ Can be used as a linear repeater by periodically boosting optical power
- ⇒ Can be used in nonlinear region as a level clamping amplifier
- ⇒ Available solutions
 - ⇒ Erbium Doped Fiber Amplifiers (EDFA)
 - ⇒ Semiconductor Optical Amplifiers (SOA)

Optical Amplifiers

□ Three classes

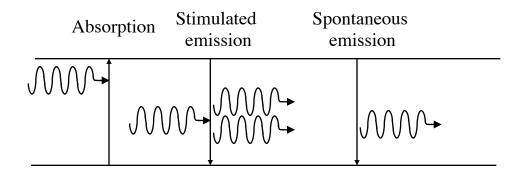

- \Rightarrow Booster (power) amplifiers: Boost power into transmission fiber, low NF, high P_{sat} .
- ⇒ In-line amplifiers: Periodically amplify signal due to fiber attenuation, high G, high P_{sat}.
- ⇒ Receiver preamplifiers: Boost power into receiver, low NF, high G.



Optical Amplifiers Gain Characteristics

Define: Unsaturated amplifier gain G_0 as the gain achieved at low signal levels and in the linear amplifier regime.

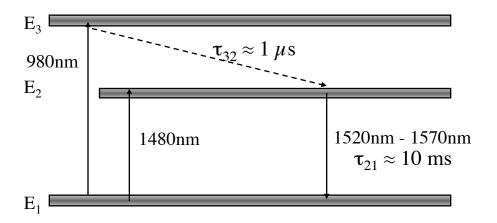
Define: Output saturation power as the output power needed to decrease the amplifier gain by a factor of 2.



Region I: Linear Region II: Nonlinear (Saturated)

$$G_0 = \frac{P_{out}}{P_{in}} \qquad G = G_0 \exp\left(-\frac{G - 1}{G} \frac{P_{out}}{P_S}\right)$$

Optical Amplifier Physics


- ⇒ An atomic system with two energy levels can
 - ⇒ absorb light
 - □ amplify light
 - ⇒ spontaneously emit light

Stimulated and spontaneous emission are achieved by pumping the amplifier electrically or optically

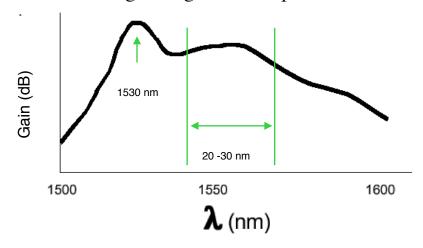
Erbium Doped Fiber Amplifier (EDFAs)

Energy levels for Er+ ions in silica glass

Two pumping options:

- 980 nm pump: Complete population inversion -> Low noise figure
- <u>1480 nm pump</u>: Low population inversion -> high quantum efficiency in converting pump photons to signal photons

EDFA Gain Spectrum


 \Rightarrow The gain coefficient for a single atomic transition in the unsaturated regime is given by the peak gain g_0 and the dipole relaxation time T_2 as

$$g(\omega) = \frac{g_0}{1 + (\omega - \omega_0)^2 T_2^2}$$

Averaging the gain over the distribution of atomic transition frequencies yields the effective gain

$$g_{eff}(\omega) = \int_{-\infty}^{\infty} g(\omega, \omega_0) f(\omega_0) d\omega_0$$

An illustration of the effective gain is given below. Note the presence of a gain peak around 1530nm and a semi-flat gain region with optical bandwidth 20-30nm.

EDFA Theory Basics

- ⇒ Using a simple two-level model for the EDFA assumes that ASE and excited-state absorption are negligible. Also, this model assumes the top excited energy level empties instantly (negligible excited state lifetime).
- The population densities of states E_1 and E_2 are given by N_1 and N_2 , with the cross section emission and absorption $\sigma_p^a, \sigma_p^e, \sigma_s^a, \sigma_s^e$ for the pump and signal photon flux ϕ_p and ϕ_s . T_1 is about 10ms for EDFAs.

$$\frac{\partial N_2}{\partial t} = \left(\sigma_p^a N_1 - \sigma_p^e N_2\right) \phi_p + \left(\sigma_s^a N_1 - \sigma_s^e N_2\right) \phi_s - \frac{N_2}{T_1} \frac{\delta y}{\delta x}$$

$$\frac{\partial N_1}{\partial t} = \left(\sigma_p^e N_2 - \sigma_p^a N_1\right) \phi_p + \left(\sigma_s^e N_2 - \sigma_s^a N_1\right) \phi_s + \frac{N_2}{T_1}$$

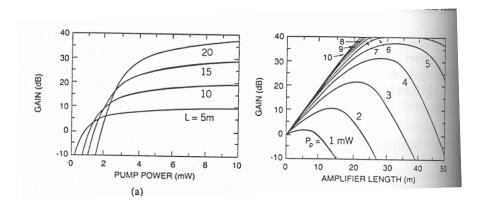
If we ignore ASE, the evolution of the pump and signal powers along the fiber in direction z can be approximated by taking into account the fiber loss at signal and pump wavelengths (α, α')

$$\frac{\partial P_{S}}{\partial z} = \Gamma_{S} \left(\sigma_{s}^{e} N_{2} - \sigma_{s}^{a} N_{1} \right) P_{S} - \alpha P_{S}$$

$$\pm \frac{\partial P_{p}}{\partial z} = \Gamma_{p} \left(\sigma_{p}^{e} N_{2} - \sigma_{p}^{a} N_{1} \right) P_{p} - \alpha' P_{p}$$

EDFA Theory Basics

For short amplifiers (10-20m), optical loss can be ignored ($\alpha = \alpha' = 0$). Let $N_1 + N_2 = N_{\text{total}}$, and a_d be the cross-sectional area of the doped portion of the fiber core. The steady state solution for the rate equations reduces to


$$N_2(z) = -\frac{T_1}{a_d h v_s} \frac{\delta P_s}{\delta z} \pm \frac{T_1}{a_d h v_p} \frac{\delta P_p}{\delta z}$$
$$a_d = \Gamma_s a_s = \Gamma_p a_p$$

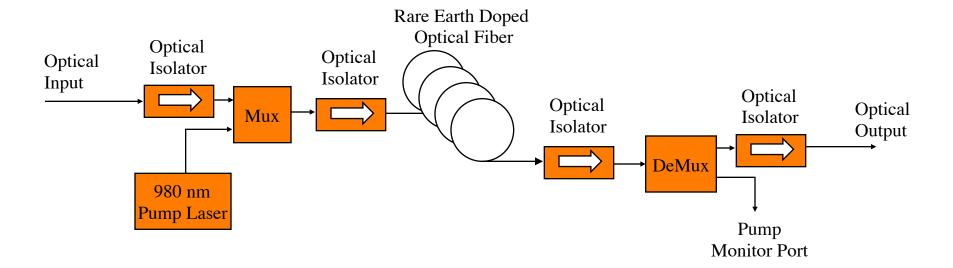
⇒ Substituting this equation into the power evolution equations and integrating over the length of fiber, the gain can be computed by taking the ratio of output to input power

$$G = \Gamma_{S} \exp \left[\int_{0}^{L} \sigma_{s}^{e} N_{2} - \sigma_{s}^{a} N_{1} dz \right]$$

EDFA Basics

- ⇒ From the figure below we observe that
 - ⇒ For a given amplifier length the gain initially increases with pump power then saturates
 - ⇒ For a given pump power, the amplifier gain becomes maximum at optimum
 - L, then rolls off sharply as the pump photons have all been absorbed.
 - \Rightarrow Both L and P_p must be optimized for a particular amplifier design.

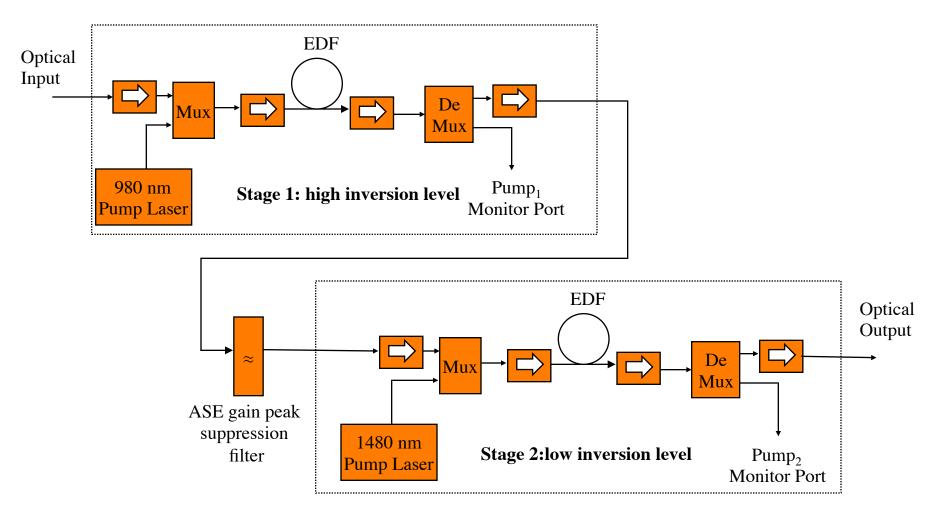
EDFA pumps


- ⇒ 1480 nm pumping: it was the choice for most of the first commercial solutions
 - ⇒ Mainly due to the fact that 1480 nm laser were more resilient and commercially available at high output power (which is usually in the order of 200-400 mW)
 - ⇒ Generally less expensive
 - ⇒ From a pure transmission point of view, they have low performance in terms of noise figure (see later)
- ⇒ 980 nm pumping:
 - ⇒ Today laser technology has reach a high reliability even at 980 nm
 - ⇒ Most current commercial EDFAs use this solution, sometimes together with 1480 nm

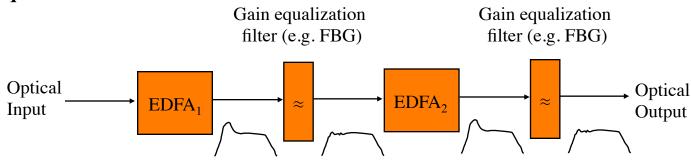
Typical Pump Source Characteristics

Performance parameter/wavelength	980 nm	1480 nm
Minimum noise figure	<4 dB	5.5 dB
Optical conversion power efficiency	35%	50%
Diode laser quantum efficiency	0.92 W/A @ 240 mW	0.36 W/A @ 200 mW
Module wall-plug efficiency	39% W/W	13% W/W
1999 rated module power	200 mW	180 mW
State-of-the-art module reliability	110 FIT	65 FIT
Mean time to failure	>2×10 ⁶ hours @ 150 mW	>5×10 ⁶ hours @ 120 mW
-3dB Er absorption band in silica	976 to 984 nm	> ~1450 nm

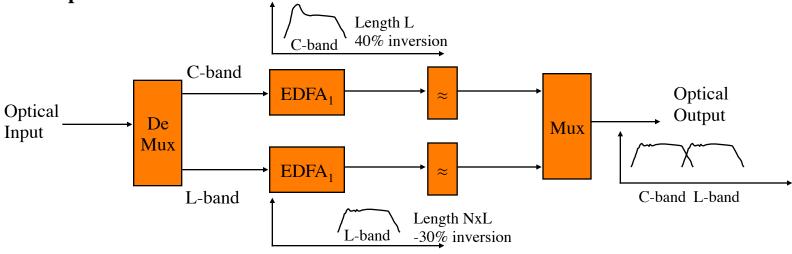
Rare Earth Fiber Amplifiers


Rare Earth Doped Fiber Amplifier: Single pump, single stage geometry

EDFA Characteristics


- ⇒ Gain:
 - ⇒ Higher gain requires high
- ➡
 High Output Power:
 - Requires high P_{out,sat} which requires high optical pump power and high inversion
- □ Gain Flatness
 - ⇒ Is a function of inversion level.
 - ⇒ Typically 40%-60% inversion leads to broadest gain with lowest ripple
- Gain Bandwidth:
 - Can be enhanced using optical filtering and composite gain media
- Noise Figure:
 - ⇒ High population inversion level
- Transient Behavior:
 - Can be suppressed using optical gain clamping or dynamic gain control feedback

Two-Stage EDFA Optical Amplifier



Wideband EDFAs

Gain Equalization

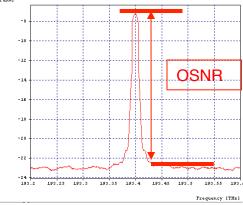
Split-Band Amplification

ASE noise in EDFA

⇒ The output ASE noise is:

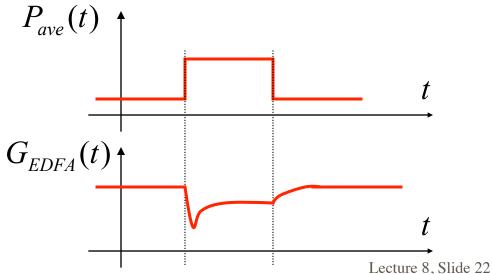
$$P_{ASE}^{out} \cong 2n_{sp}h\nu(G-1)\Delta B$$

- ⇒ where:
 - \Rightarrow $n_{sp} = (N_2 N_1)/N_2$ is the spontaneous emission factor, mainly dependent on the degree of inversion
 - $\Rightarrow h$ is the Plank constant
 - $\Rightarrow v$ is the central optical frequency
 - \Rightarrow G is the EDFA gain
 - $\Rightarrow \Delta B$ is the bandwidth over which the noise is measured
- \Rightarrow The <u>noise figure</u> of the EDFA is defined as: $F = 2n_{sp}$
- \Rightarrow The optimal value for an EDFA is F=3 dB
 - ⇒ Typical values are from 4 to 5 dB


ASE noise in EDFA -II

⇒ The output ASE noise on a 0.1 nm bandwidth is approx. given by:

$$P_{ASE}^{out} \cong -58dBm + F_{EDFA} + G_{EDFA}$$


- ⇒ The ASE noise is one of the factor that sets the ultimate limits of optically amplified systems
 - The optical signal-to-noise ratio (OSNR) cannot go below a given level to have acceptable BER at the receiver
 - \Rightarrow Given an input signal power P_{in}

$$OSNR \Big|_{dB} \cong P_{signal}^{in} + 58dBm - F_{EDFA}$$

EDFA features

- ⇒ In a WDM environment, the crosstalk among channels generated by EDFA is very low
 - ⇒ This is one of the main reason for the EDFA success
 - ⇒ Physically, this is related to the (slow, ms) time constant of the saturation process in EDFA
 - ⇒ A comb of tens of channels can be amplified by a single EDFA with negligible crosstalk
- \Rightarrow Still, in some important situation, transient effects in EDFA may be relevant P(t)
 - ⇒ Add/drop of channels
 - ⇒ Bursty/packetized traffic

