ECE228B

Fiber Optic Components and Systems Homework \#2 Solutions

Problem 1:

Consider a $1.55 \mu \mathrm{~m}$ InGaAsP /InP bulk laser $400 \mu \mathrm{~m}$ in length with confinement factor $\Gamma=.05$, internal quantum efficiency of 80% and internal loss of $10 \mathrm{~cm}-1$. cleaved facets, 0.2 mm thick active region, 0.1 ps lifetime for the linewidth calculation.
a. Plot the gain versus wavelength
b. Plot the peak gain versus carrier density
c. What is the mirror loss?

$$
\alpha_{m}=\frac{1}{L} \ln \left(\frac{1}{R}\right)=\frac{1}{.04 \mathrm{~cm}} \ln \left(\frac{1}{.32}\right)=28.46 \mathrm{~cm}^{-1}
$$

d. What is the threshold modal gain?

$$
\begin{aligned}
& \Gamma g_{\text {th }}=\alpha_{\text {Total }} \\
& \alpha_{\text {Total }}=\alpha_{i}+\alpha_{m}=10.00 \mathrm{~cm}^{-1}+28.46 \mathrm{~cm}^{-1}=38.46 \mathrm{~cm}^{-1} \\
& g_{\text {th }}=\frac{\alpha_{\text {Total }}}{\Gamma}=\frac{38.46 \mathrm{~cm}^{-1}}{.05}=769.2 \mathrm{~cm}^{-1}
\end{aligned}
$$

e. What is the differential quantum efficiency?

$$
\eta=\frac{\eta_{i} \alpha_{m}}{\alpha_{t}}=\frac{(0.8) 28.46}{38.46}=0.59
$$

f. What is the axial mode spacing?

$$
\text { Assume } \mathrm{N}_{\mathrm{g}}=3.5
$$

$$
\Delta \lambda=\frac{\lambda^{2}}{2 n_{g} L}=\frac{(1.55)^{2}}{(2)(3.5)\left(400 \times 10^{-4}\right)}=0.85 \mathrm{~nm}
$$

Problem 2:

Consider a DFB laser with a $400 \mu \mathrm{~m}$ long grating, an effective mode index 3.5 and a grating corrugation period $0.22 \mu \mathrm{~m}$. Calculate the symmetric modes (wavelengths) that the laser will operate at assuming no $\lambda / 4$ phase shift in the grating. What will be the output wavelength if the grating is fabricated with a $\lambda / 4$ phase shift in the grating?

$$
\begin{aligned}
& \text { For } D F B \text { with } \lambda / 4 \text { shift, single mode will operate at } \\
& \Delta \beta L=0 \text {, which gives } \\
& \lambda=2 n_{\text {eff }} \Lambda=2 \times 3.5 \times 0.22 \mu \mathrm{~m}=1.54 \mu \mathrm{~m} \text {. } \\
& \text { For } D F B \text { without } \lambda / 4 \text { shift, there will be two modes, } \\
& \text { and } \Delta \beta L \text { depends on } g K L \text {. } \\
& \text { If } \alpha L=1 \text {, then } \Delta \beta L= \pm 2.5, \Delta \beta= \pm \frac{2.5}{400 \mu \mathrm{~m}}= \pm 0.0063 \mu \mathrm{~m}^{-1} \text {. } \\
& \beta=\beta=\Delta \beta=\frac{2 \pi}{1.54 \mu \mathrm{~m}} \pm 0.0063 \mathrm{~mm}^{-1}=4.0737 \mathrm{\mu m}^{-1}, 4.0863 \mathrm{~mm}^{-1} \text {. } \\
& \lambda=\frac{2 \pi}{\beta}=1.5424 \mu \mathrm{~m}, 1.5376 \mu \mathrm{~m} .
\end{aligned}
$$

Problem 3:

Consider a ridge waveguide bulk InGaAsP /InD bulk laser with internal quantum efficiency of 80% and internal loss of $10 \mathrm{~cm}-1$, cleaved facets, $0.2 \mu \mathrm{~m}$ thick $1.55 \mu \mathrm{~m}$ composition active region, differential gain $2000 \mathrm{~cm}-1$ and transparency carrier density of $2.8 \times 1018 \mathrm{~cm}-3$. a) What is the transverse confinement factor? (use na =3.5, $\mathrm{nc}=3.17$) B) How many transverse modes exist? C) Assuming the structure below with a $200 \mu \mathrm{~m}$ cavity length, calculate the lateral confinement factor and threshold current as a function of the width of the waveguide. D) For a $2 \mu \mathrm{~m}$ waveguide width, plot the threshold current versus cavity length.

$$
\begin{aligned}
& \eta_{i}=80 \%, \quad\left\langle\alpha_{i}\right\rangle=10 \mathrm{~cm}^{-1}, \quad d=0.2 \mathrm{\mu m} \\
& g_{0}=2000 \mathrm{~cm}^{-1}, \quad N+r=2.8 \times 10^{18} \mathrm{~cm}^{-3}
\end{aligned}
$$

$$
\begin{align*}
& V=k_{0} d \sqrt{n_{a}^{2}-n_{c}^{2}}=\frac{2 \pi}{1.55 \mu \mathrm{~m}} \times 0.2 \mu \mathrm{~m} \times \sqrt{3.5^{2}-3.17^{2}}=1.20 \\
& \Gamma_{x}=\frac{V^{2}}{2+V^{2}}=0.42
\end{align*}
$$

b) For $V=1.20$

$$
\text { there're only two modes, } T E_{0} \text { and } T M_{0} \text {. }
$$

C)

$$
\begin{aligned}
& \begin{array}{l}
W=2 m \mu m \\
V_{l}=k_{0} W \sqrt{n_{a}^{2}-n_{c}^{2}}=\frac{2 \pi}{1.55 \mu_{m}} \times 2 \mu m \times \sqrt{3.5^{2}-3.17^{2}}=12.0
\end{array} \\
& \Gamma_{y}=\frac{V_{l}^{2}}{2+V_{l}^{2}}=0.99 \\
& I_{t h}=\frac{B N_{\text {th }}^{2} q V}{\eta_{i}} \\
& N_{t h}=N_{+r} e^{g_{+h} / g_{0}}=N_{+r} e^{\left(c \alpha_{1}\right.} \\
& \Rightarrow I_{\text {th }}=\frac{\xi V P N_{\text {tr }}^{2}}{\eta_{i}} e^{2\left(\left\langle\alpha_{i}\right\rangle+\alpha_{m}\right) / \Gamma g_{0}} \\
& I_{\text {th }}=\frac{q d W L B N_{+r}^{2}}{\eta_{i}} e^{2\left(\left\langle\alpha_{i}\right\rangle+\alpha_{m}\right) / \Gamma g_{0}} \\
& \text { in which } B \sim 10^{-10} \mathrm{~cm}^{3} / \mathrm{s}, \quad d=0.2 \mu \mathrm{~m}, \quad L=200 \mu \mathrm{~m}, \quad \eta_{i}=0.8 \text {, } \\
& N_{\text {tr }}=2.8 \times 10^{18} \mathrm{~cm}^{-3},\left\langle\alpha_{i}\right\rangle=10 \mathrm{~cm}^{-1}, \quad \alpha_{m}=\frac{1}{L} \ln \frac{1}{R}, \quad R=0.32, \\
& \Gamma=\Gamma_{x} \Gamma_{y} \Gamma_{z}=0.42, \quad \Theta_{0}=2000 \mathrm{~cm}^{-1}
\end{aligned}
$$

d) Same equation as in (C), just make L the variable instead of W.

Problem 4:

Calculate and plot the wavelength shift vs. tuning current for a tunable Bragg reflector that operates based on the free-carrier plasma effect. Assume $\lambda_{\mathrm{g}}=1300 \mathrm{~nm}$ InGaAsP tuning region operated at $1500 \mathrm{~nm}, \beta_{\mathrm{pl}}=-1.3 \times 10^{-20} \mathrm{~cm}^{3}$, active region with $\mathrm{L}=400 \mu \mathrm{~m}, \mathrm{~d}=0.3 \mu \mathrm{~m}, \mathrm{w}=2 \mu \mathrm{~m}$ and confinement factor $\Gamma_{\mathrm{t}}=0.3$. For the material assume an infinite spontaneous recombination time constant, bimolecular recombination constant $B=10^{-10} \mathrm{~cm}^{3} / \mathrm{s}$ and Auger recombination constant $\mathrm{C}=3 \times 10^{-29} \mathrm{~cm}^{6} / \mathrm{s}$.

Active Colone $V=400 \mu \mathrm{me} \cdot 2 \mathrm{\mu m} \cdot 0.3 \mu \mathrm{~m}$

$$
=2.4 \times 10^{-10} \mathrm{~cm}^{3}
$$

Current vs. cannier Concentration is
obtained from rath SM.

$$
\frac{I_{g}}{q v}=B N^{2}+c N^{3}
$$

$$
I_{g}=\left(1.6022 \times 10^{-18}\right)\left(2.4 \times 10^{-10}\right)
$$

$$
\left[10^{-10} N^{2}+3 \times 10^{-29} N^{3}\right]
$$

Solving for N for lg from OMA to loom

$I_{g}\left(m_{0}\right)$	ω	$\Delta \lambda(n n)$
0	1.35×10^{18}	-1.7
20	1.83×1818	-2.3
30	$2.17 x 1018$	-2.8
40	$2.45 x 1018$	-2.8
50	$2.68 x 1018$	-3.1
60	2.89×10^{18}	-3.7

$1.35 \mathrm{E}+18$	$-1.30 \mathrm{E}-20$	$1.30 \mathrm{E}-06$	$3.00 \mathrm{E}-01$	$4.00 \mathrm{E}+00$	10.0	-1.7
$1.83 \mathrm{E}+18$	$-1.30 \mathrm{E}-20$	$1.30 \mathrm{E}-06$	$3.00 \mathrm{E}-01$	$4.00 \mathrm{E}+00$	20.0	-2.3
$2.17 \mathrm{E}+18$	$-1.30 \mathrm{E}-20$	$1.30 \mathrm{E}-06$	$3.00 \mathrm{E}-01$	$4.00 \mathrm{E}+00$	30.0	-2.8
$2.45 \mathrm{E}+18$	$-1.30 \mathrm{E}-20$	$1.30 \mathrm{E}-06$	$3.00 \mathrm{E}-01$	$4.00 \mathrm{E}+00$	40.0	-3.1
$2.68 \mathrm{E}+18$	$-1.30 \mathrm{E}-20$	$1.30 \mathrm{E}-06$	$3.00 \mathrm{E}-01$	$4.00 \mathrm{E}+00$	50.0	-3.4
$2.89 \mathrm{E}+18$	$-1.30 \mathrm{E}-20$	$1.30 \mathrm{E}-06$	$3.00 \mathrm{E}-01$	$4.00 \mathrm{E}+00$	60.0	-3.7

Department of ECE
Problem 5:
For a mode-locked laser, assume the envelopes are given by the expression below and that the phases are equal. v_{m} is the frequency spacing of mode m, where $\mathrm{m}=0$ coincides with the central frequency of the atomic lineshape. Determine expressions for the mean power, peak power and pulse width (defined at the full-width half-maximum FWHM).

$$
A_{q}=\sqrt{P} \frac{(\Delta v / 2)^{2}}{\left(m v_{m}\right)^{2}+(\Delta v / 2)^{2}}, \mathrm{~m}=-\infty, \ldots,+\infty \mathrm{p}
$$

Assume the gain curve orel rocker look something as follows

Total H mocker $M=2 N+1$
pulse width: The quin lineingere has a future of AD, So Souse $\approx \frac{1}{\Delta \nu}$
number of mocker is given by mock sppenation v_{n} and linewithth

$$
M=\frac{\Delta \nu}{\omega_{n}}
$$

Meas intensity
peak intensity

$$
\bar{I}=M|A|^{2}=M P
$$

$$
I_{p}: M \bar{I}=M^{2} P
$$

