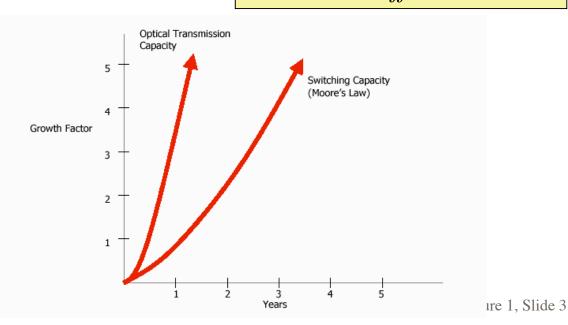
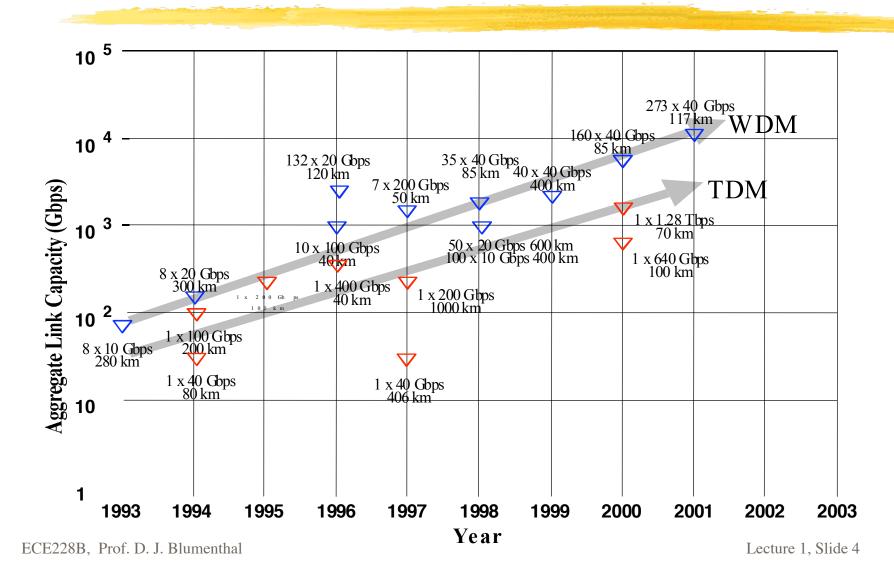
Lecture 1: Overview of Optical Communications Links and Intro to Photodetection


Overview of Optical Communications Links

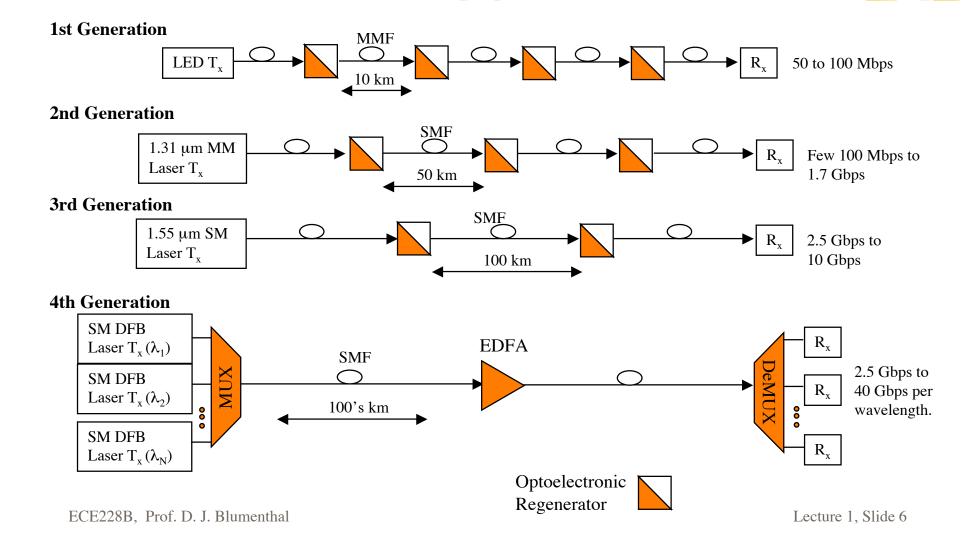
Fiber-Optic Network Applications

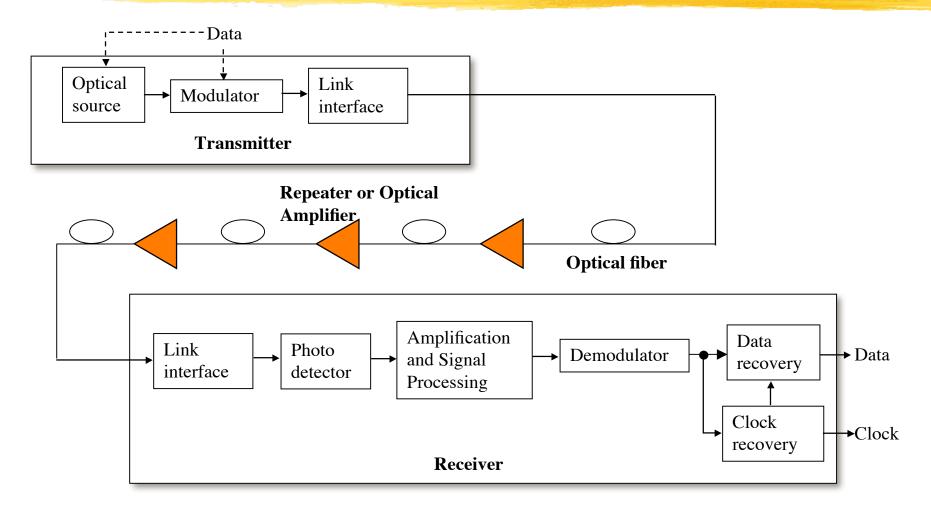
- ⇒ Main application: digital transmission
 - ⇒ Voice, telephone
 - ⇒ Data
 - ⇒ IP Networks
 - ⇒ ATM, Gigabit Ethernet, FDDI, etc.
 - ⇒ Distributed Computing and Databases
 - ⇒ Video, Multimedia
- ⇒ Microwave Photonics
 - ⇒ Fiber/Wireless
 - ⇒ Hybrid Fiber/Coax
- ⇒ Other applications
 - ⇒ Fiber/Wireless
 - ⇒ Hybrid Fiber/Coax


Note:

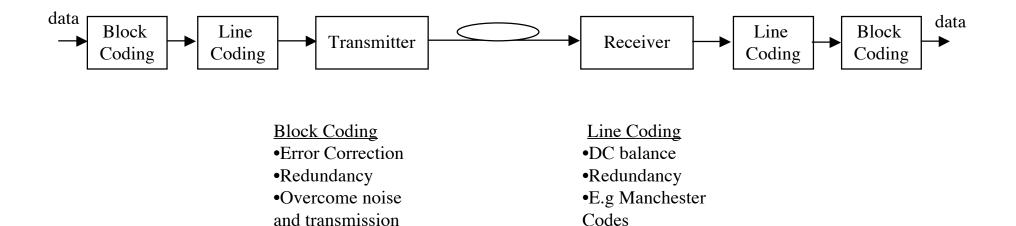
Traffic generated by datacentric application (mainly IP) is rapidly surpassing the voicecentric traffic

ECE228B, Prof. D. J. Blumenthal


Transmission Bandwidth Evolution


Evolution of Fiber-Optic Point-to-Point Transmission

Multimode fiber-optic waveguides >5dB/km attenuation	Low loss Single mode optical fibers 1 dB/km @ 1310 nm	Operation in the low loss window of 0.2 dB/km @ 1550 nm but high dispersion @ 1550 nm		Multichannel erbium doped fiber amplifiers (EDFAs) @ 1550 nm deployed.	90s	AT&T True Wave Fiber an Corning Large Optical Core Fiber reduce fiber FWM	
Room temperature GaAs LEDs and multimode FP Lasers @ 830 nm	Multimode Fabry-Perot 1310 nm lasers	Development of single frequency DFB 1310 nm and 1550 nm lasers	New disp shifted fil yields Ze dispersion 1550 nm dB/km lo 1310 nm	per ro n @ and 0.5	Mul WE Nur chai chai limi	d 90s Itichannel OM @1550 nm. Inher of Innels and Innel spacing Ited by fiber Ited wave mixing Item	Mid 90s Optical Solitons, dispersion compensation
1st Generation	2nd Generation	3rd Generati	on	4th Gei	erat	ion	5th Generation

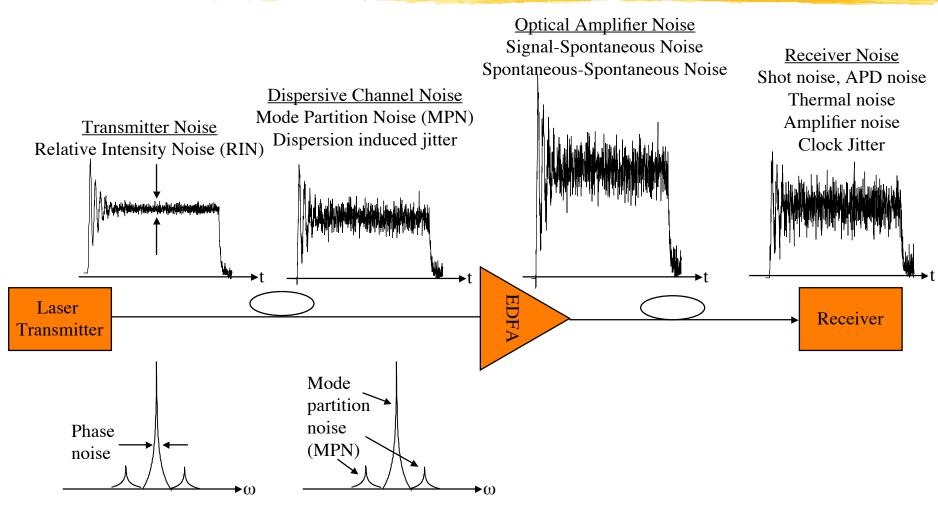

DWDM Link Evolution

Basic Fiber Optic Point-to-Point Link

Basic Communication System

impairments

Codes


•E.g. FEC, Turbo-

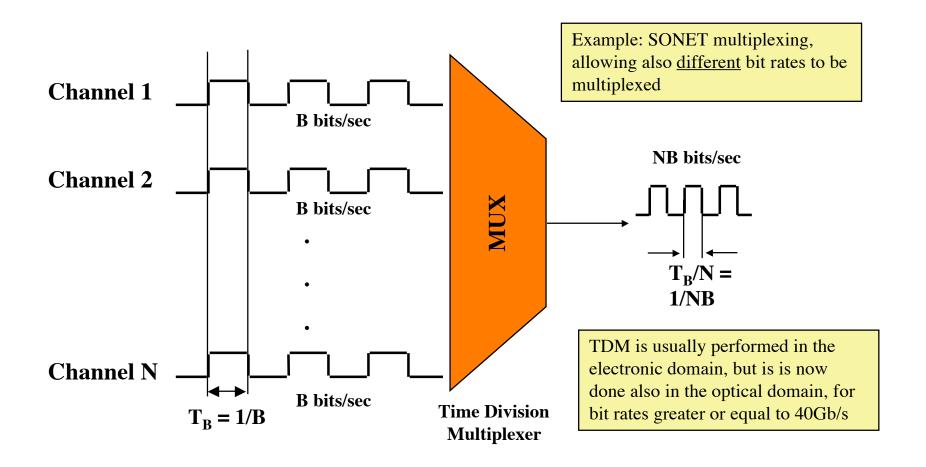
Link Capacity and Spectral Efficiency

- ⇒ Capacity of an optical communications channel is the maximum bit rate that can be transmitted without error for a given noise, bandwidth and power.
- ⇒ Capacity can be calculated independent of modulation, coding or decoding technique
- ⇒ For a WDM (Wavelength Division Multiplexed) optical communications system

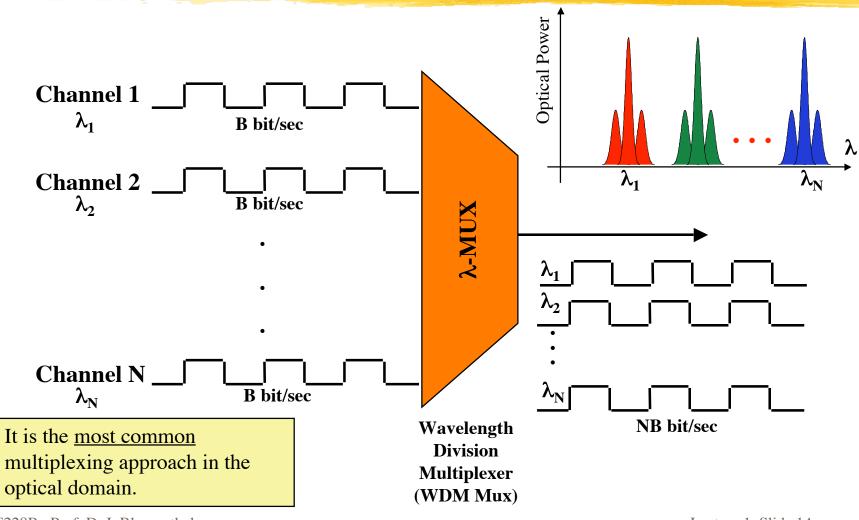
S = Spectral Efficiency =
$$\frac{\text{Capacity per Channel}}{\text{Channel Spacing}} = \frac{C}{\Delta f} = \frac{\text{Bits/Second}}{\text{Hz}}$$

Signal to Noise Ratio (SNR)

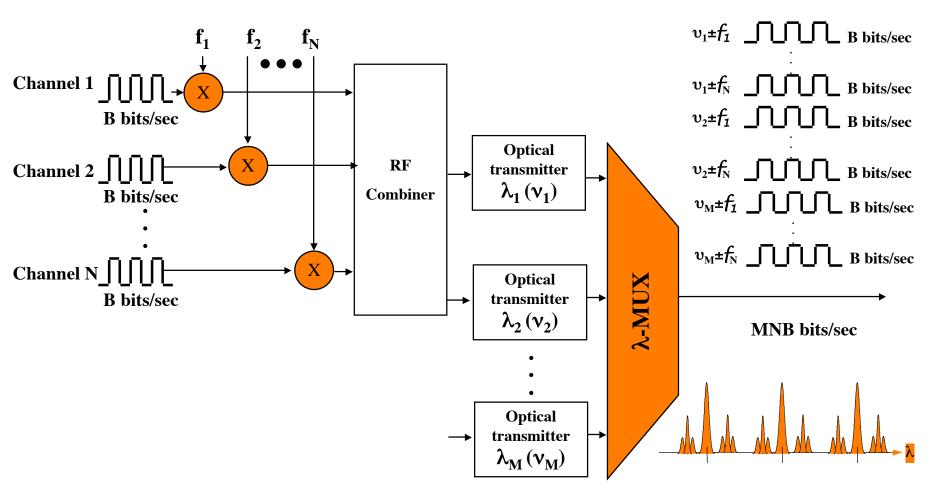
ECE228B, Prof. D. J. Blumenthal


Lecture 1, Slide 10

Multiplexing Techniques


Multiplexing Techniques

- ⇒ Multiplexing is the technique used to carry several different information channels on a common physical medium. The standard techniques are:
 - ⇒ Time Division Multiplexing (TDM)
 - ⇒ Frequency Division Multiplexing, indicated as "Wavelength Division Multiplexing" (WDM) in optics
 - ⇒ Space Division Multiplexing (SDM)
 - ⇒ Code Division Multiplexing (CDMA)
 - ⇒ Multilevel coding


Time Division Multiplexing (TDM)

Wavelength Division Multiplexing (WDM)

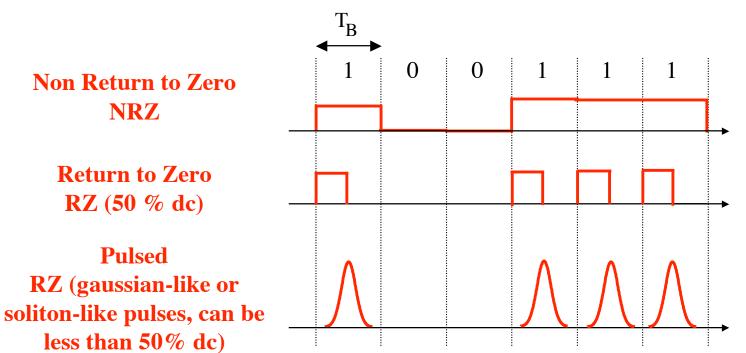
Wavelength/Subcarrier Multiplexing

Optical Modulation

Modulation Basics (I)

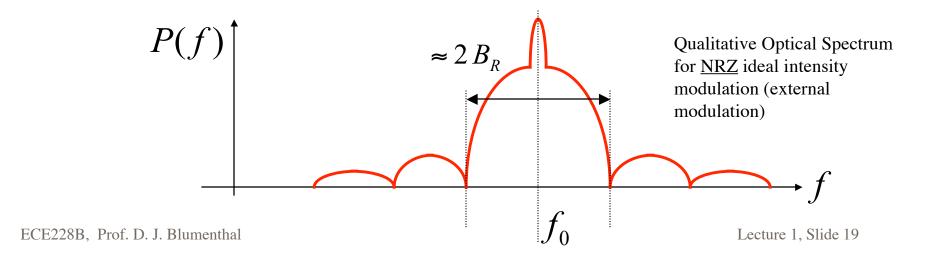
⇒ Define

- \Rightarrow R_b = bit rate = bits/second
- ⇒ R_c = added redundancy per bit to improve SNR = baud = symbols/second
- \Rightarrow B = occupied bandwidth per channel
- \Rightarrow M = number of points in signal constellation
- ⇒ Binary Modulation
 - ⇒ One bit per symbol
- ⇒ Non-Binary Modulation
 - ⇒ More than one bit per symbol
- ⇒ No inter-symbol interference (ISI)
 - $\Rightarrow R_{s} \leq B$
- ⇒ Error correction
 - $\Rightarrow R_c \leq 1$
- ⇒ No error correction

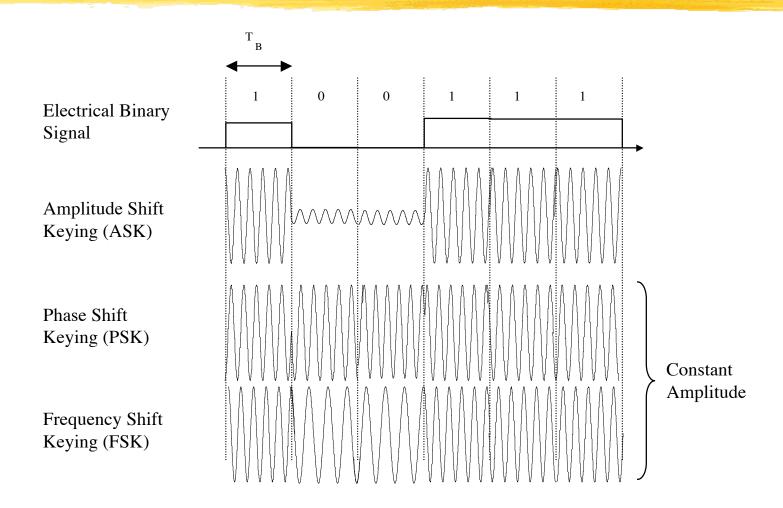

$$\Rightarrow R_c = 1$$

Information bit rate per channel in one polarization state

$$R_b = R_s R_c \log_2 M$$

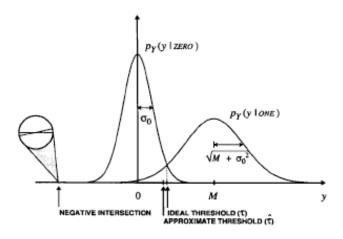

Binary Intensity Modulation

⇒ The primary modulation format used for commercially deployed optical systems are intensity modulation (optical power modulation)

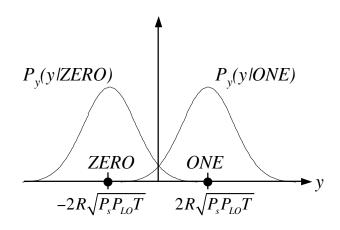


Optical spectrum for intensity modulation

- ⇒ If the intensity modulation is imposed to the optical signal together with unwanted phase or frequency modulation (e.g chirp under direct laser modulation, excess laser phase noise)
 - ⇒ The resulting optical spectrum is larger than the bit rate
- ⇒ If the modulation is a (nearly) pure intensity modulation, without any accompanying phase/frequency shift (e.g. external modulation)
 - ⇒ The resulting spectrum has a primary lobe that occupies the order of the bit rate



Coherent Binary Modulation



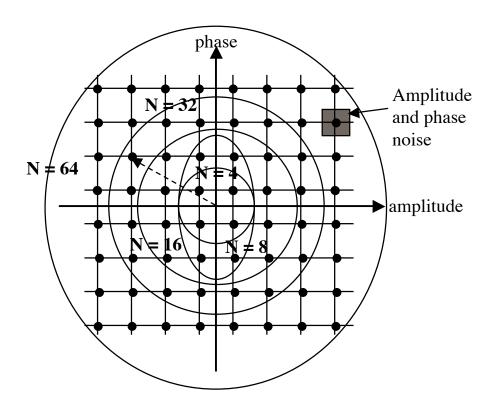
Binary Signal Constellations

Binary Intensity Modulation/Direct Detect (IM/DD)

Two-Level PSK

M = average power in 1 bit

 σ_0 = variance of signal independent noise

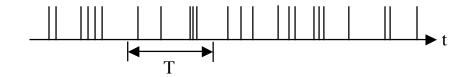

 P_s = average signal power

 P_{LO} = average local oscillator power

T = bit period

Quadrature Multi-Level Modulation

- ⇒ Both optical phase and amplitude can be used to code symbols per bit
- N-ASK is N-level amplitude shift keying (generalization of ASK): along amplitude axis
- N-PSK is N-level phase shift keying (PSK): along phase axis
- N-QAM is quadrature amplitude modulation: 2D in amplitude and phase
- Receiver must isolate one point in constellation per bit
- Noise makes more difficult to isolate symbol (SNR)
- ⇒ 2-D space can be increased to 3 and 4-D by allowing temporal modulation of phase and amplitude


Photodetection

Detection of Optical Signals

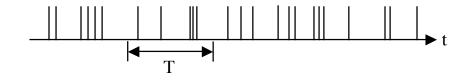
- ⇒ Thermal: Temperature change with photon absorption
 - ⇒ Thermoelectric
 - ⇒ Pyromagnetic
 - ⇒ Pyroelectric
 - ⇒ Liquid crystals
 - ⇒ Bolometers
- ⇒ Wave Interaction: Exchange energy between waves at different frequencies
 - ⇒ Parametric down-conversion
 - ⇒ Parametric up-conversion
 - ⇒ Parametric amplification
- ⇒ Photon Effects: Generation of photocarriers from photon absorption
 - Photoconductors
 - ⇒ Photoemissive
 - ⇒ Photovoltaics

Photon Statistics

- ⇒ Photon sources can in general be characterized as coherent or incoherent[†]
 - ⇒ Coherent: Probability that a photon is generated at time t₀ is mutually independent of probability of photons generated at other times (Markov Process)
 - \Rightarrow Poisson Process: Probability of finding *n* photons in time interval *T*
 - ⇒ Bunching is a trait of the Poisson process
 - ⇒ Interarrival time is decaying exponentially distributed

$$P(n \mid T) = \frac{(rT)^n e^{-rT}}{n!}$$

† Can also be a combination of these two types -> partially coherent


Where:

P(n|T) is probability of finding n photons in time interval T

R is mean photon arrival rate (photons/second)

Photon Statistics (II)

- ⇒ Narrowband Thermal (Gaussian):
 - \Rightarrow Bose-Einstein Process: Probability of finding n photons in time interval T

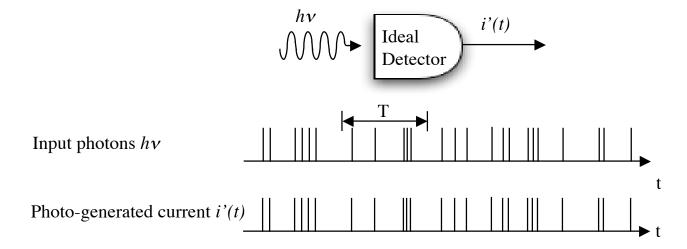
$$P(n) = \left(\frac{1}{1+n_b}\right) \left(\frac{n_b}{1+n_b}\right)^n$$

Where:

P(n) = probability of finding n photons given

 $n_b = mean number photons from incoherent source = N_0/hv_0$

 N_0 = spectral density of source = P_{opt}/B_0


 P_{opt} = total optical power from source

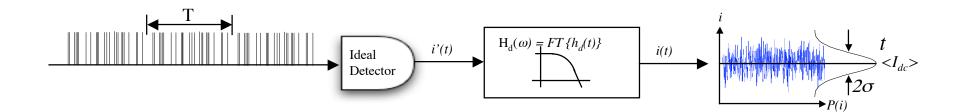
 B_0 = source optical bandwidth

 $T = observation time \le 1/B_0$

Detecting Photons (1)


- Any material that can respond to single photons can be used to count photons
- ⇒ Ideal Detector
 - Generation of a electron-hole pair per absorbed photon results in an instantaneous current pulse

Detecting Photons (2)


⇒ Real Detector

- \Rightarrow Has an inherent "impulse response," $h_d(t)$, due to built in resistance and/or capacitance.
- ⇒ Can be modeled as an RC filter with low pass response

Detecting Photons (3)

- As the average photon rate increases, the observed photo-current starts smoothing out, with a variance around the mean (average) count that is based on the statistics (which tends to Gaussian for large photon arrival rate)
- \Rightarrow P(i) is the probability function of measuring the current at a certain value at time t.

Detecting Photons (4)

 \Rightarrow The detector output current i(t) can be modeled as a discrete "filtered Poisson" process

$$i(t) = \sum_{j=1}^{N} h_d(t - \tau_j)$$

- \Rightarrow Where $h_d(t)$ is PD impulse response, N is total number e-h pairs generated, τ_j is the random time the j^{th} photocarrier is generated.
- ⇒ Define: Quantum Efficiency (QE), unitless, as

$$\eta = \frac{\text{number of photocarriers produced}}{\text{number of incident photons}}, 0 \le \eta \le 1$$

 \Rightarrow Define: Time varying photon rate parameter ($\lambda(t)$) in units of photocarriers/second as

$$\lambda(t) = \frac{\eta}{h\nu} P_{recvd}(t)$$

Detecting Photons (5)

⇒ The power incident on a photodetector of area A, in units of Watts, is

$$P(t) = \int_{A} I(p, t) dA$$

 \Rightarrow where the instantaneous optical intensity at an observation point p is given by

$$I(\stackrel{\mathbf{r}}{p},t) = \frac{1}{Z_0} \left| E(\stackrel{\mathbf{r}}{p},t) \right|^2$$

 \Rightarrow The time varying photon rate parameter $\lambda(t)$ can then be written in terms of P(t)

$$\lambda(t) = \frac{\eta}{h\nu} \frac{\left| E(t) \right|^2}{Z_0}$$

Detecting Photons (6)

- ➡ If we consider an observation interval, over which we are going to average our photon count over
 - This can be due either to the inherent bandwidth of the detector or (as we will see later) on purpose to match the receiver bandwidth to the data bit rate
- Then the number of photocarriers generated over the interval T counted at the j^{th} observation interval

$$N_j = \int_0^T \lambda_j(\tau) d\tau$$

Assuming a coherent source, the *conditional inhomogeneous Poisson process* describes this photon count during the j^{th} observation interval

$$P(N_{j} = N) = \frac{\left(\int_{0}^{T} \lambda_{j}(\tau) d\tau\right)^{N}}{N!} e^{\left(-\int_{0}^{T} \lambda_{j}(\tau) d\tau\right)}$$

Detecting Photons (7)

 \Rightarrow If we assume a constant rate parameter over the time interval T (independent of j), then the photo-generated current can be written as

$$i(t) = \lambda(t)q$$

$$\lambda(t) = \frac{N}{T}$$

⇒ Then the photocurrent produced by the photodetector can be written in Amperes, assuming the observation time is normalized to one second

$$i(t) = \lambda(t)q = \frac{\eta q}{h\nu} P_{rcvd}(t)$$
$$= \Re P_{rcvd}(t)$$

⇒ Where we have defined the detector responsivity as

$$\Re = \frac{\eta q}{h \nu}$$