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Lecture 10: Semiconductor
Optical Amplifiers
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Semiconductor Optical Amplifiers

 Active waveguides fabricated in semiconductor waveguides
 Gain usually achieved by electronic current injection
 Can be integrated with other device structures
 Gain is related to SC bandgap (1.55 and 1.3 micron

wavebands)
 Relatively broad bandwidth (30 - 100nm)
 Fast carrier dynamics (can be advantage or disadvantage)
 Polarization dependence is an important issues as is linear vs.

non-linear operation
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Semiconductor Optical Amplifiers (SOAs)
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➯  SOA is an SC laser without
mirrors
➯  Optical signal experiences
gain while traveling once
through device
➯  State-of-the-art amplifiers are
polarization insensitive
➯  Can be used for a variety of
purposes including

➯  Post, in-line or
preamplifiers
➯  Multiwavelength
amplifiers when gain
clamping is used
➯  Optical wavelength
converter
➯  Optical modulator
➯  Gating element in an
optical switch
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SOA Classes
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Linear and Non-Linear Gain
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SOA as an amplifier

 Linear amplification only to avoid pattern effects (described later in this
lecture)

 SOAs have high gain, so making a linear amplifier is quite difficult, there
are several approaches that are used
 Physically tapered structure to reduce the intensity as the power increases
 Use a very fast carrier lifetime material like a quantum dot SOA

 In the end, in this regime we want to avoid the amplifier being saturated
anywhere inside the amplifier
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Time Averaged Gain

 For an unsaturated amplifier

 Can be approximated by

 We can define the amplifier material
bandwidth as

 And the amplifier bandwidth using G(
ω) = exp[g(ω)L]over the length L
(treating as lumped)

g(! ) =
g
0

1+ ! "!
0( )
2

T
2

2 + P
PS

g(! ) =
g
0

1+ ! "!
0( )
2

T
2

2

!"
g
=
1

#T
2

!"A = !"g

ln2

g
0
L # ln2

$

%&
'

()



ECE228B, Prof. D. J. Blumenthal Lecture 10, Slide 8

Lumped vs. Distributed Models

 Lumped
 Carrier density averaged over

amplifier length
 Analytic expressions obtainable
 n(λ,t) is independent of z
 Analytic expression do not predicted

behavior that depends on z varying n.
 Distributed

 Amplifier discretized into N sections,
each of length Δz with ni(λ,t) averaged
over Δz.

 Analytic expressions difficult
 Requires numerical modeling
 n(λ,t, z)
 Predicts z dependent behavior

 Frequency response
 Wavelength dependent gain

L

n

n1
n2
n3
n4

n7
n8

nN

n5
n6

!z



ECE228B, Prof. D. J. Blumenthal Lecture 10, Slide 9

z-Dependence of Carrier Lifetime and
Gain Saturation

 Both the carrier lifetime (effective) and the optical signal power relative to gain
saturation can change as a function of z!

 Define an effective time constant
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Small Signal Frequency Response

 Depends on evolution of teff as signal propagates through amplifier
 Depends on time average photon density at location z
 Depends on amplifier Psat
 Depends on input power and wavelength
 Depends gain profile at each section

At output, linear operation only At output, nonlinear operation
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Amplified Spontaneous Emission (ASE)
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Amplifier Noise

 Noise figure is defined as

 Assuming the amplifier output is G times the input power, the SNR at the input is given by

 At the amplifier output, assuming white additive noise

 Output SNR can be written as

 And the noise figure as (for large G)
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Gain Ripple

 We define the flatness of the gain over the gain bandwidth as (chip gain G
and facet reflectivity R)

Ripple =
1+GR( )2

1!GR( )2
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Cumulative Distributed Gain

 Total gain-wavelength dependence
is function of
 Input power and wavelength
 Amplifier saturation power as a

function of wavelength
 Amplifier bias
 Amplifeir design parameters

(geometrical and physical) Pin(λ)

Pout(λ)
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Gain Compression and Recovery
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Pattern Dependent Gain
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Crosstalk

 Intersymbol interference due to finite gain recovery at high bit rates
 Intermodulation distortion in a multichannel WDM or OFDM transmission

system due to FWM products.
  Intersymbol interference in a multichannel OFDM transmission system

due to SPM or CPM.


