Lecture 13: Optical Combiners, Filters, Multiplexers, AWGRs and Switches

Optical Couplers

Directional Coupler

$\mathrm{T}_{11}(\lambda)$ is the power transfer function from input 1 to output 1.
$\mathrm{T}_{12}(\lambda)$ is the power transfer function from input 1 to output 2 .
κ is a function of the waveguide geometry, separation and physical parameters
Example: For $\kappa l=(2 m+1) \pi / 4$, and m is a nonnegative integer, power at the input will be split evenly between the two output ports. This is also known as a 3-dB coupler. Note that for a signal incident at one input the signals at both outputs will have a $\pi / 2$ relative phase shift.

N x N Splitters and Combiners

\Rightarrow Important rule for optical splitters 1 xN and combiners Nx 1
\Rightarrow If the device is frequency and polarization independent, the power loss is at least equal to $1 / N$

\Rightarrow The total loss of the device is thus:

$$
\left.\operatorname{Loss}\right|_{d B}=10 \cdot \log _{10}(N)+\varepsilon_{d B}
$$

1xN Splitters and Combiners

Integrated optic 1 xN device layout

Optical beam propagation simulation showing beams (red) directed from input port to output ports

Splitter/combiner typical characteristics

\Rightarrow The excess loss is of the order of 1 dB
\Rightarrow Commercial devices are available up to 16 ports
\Rightarrow Polarization dependent loss may be as low as 0.2 dB
\Rightarrow Standard devices show partial frequency dependence ($1-2 \mathrm{~dB}$ over the 30 nm C-band)
\Rightarrow Ultra-flat devices (over more than 30 nm) are available
$\Rightarrow 1 \times 2$ splitters with different splitting ratios
$\Rightarrow 50 / 50$ splitters (3 dB couplers)
$\Rightarrow 10 / 90,5 / 95,1 / 100$ splitters (sometimes called "optical taps")

Wavelength Filters and Multiplexers

Class I

Class III

Wavelength Filters and Multiplexers

\Rightarrow Desirable Characteristics
\Rightarrow Long term frequency stability and accuracy (low temperature sensitivity)
\Rightarrow Flat passband function (important for cascading filters and tolerance to channel drift and misalignment)
\Rightarrow Low crosstalk
\Rightarrow Polarization independent
\Rightarrow Low polarization mode dispersion (PMD)
\Rightarrow Low insertion loss and polarization dependent loss (PDL)
\Rightarrow High return loss
\Rightarrow High resolution for DWDM systems
\Rightarrow Large free spectral range (FSR) for most applications

Wavelength Filter Passband Characteristics

Fiber Bragg Gratings (FBG)

Low loss (o.i dB)
Accurate wavelength ($\pm 0.05 \mathrm{~nm}$)
Flat top filter passband
High adjacent channel crosstalk suppression (40 dB)

Temperature coefficient $\approx 0.07^{-1.25 \times 10^{-2}} \mathrm{~nm} /{ }^{\circ} \mathrm{C}$
Passband can be tuned by stretching fiber

Periodic variation in refractive index along direction of propagation

$$
\begin{gathered}
\lambda_{\circ} \text { will be reflected back if } \\
\text { the following condition is }
\end{gathered} \quad \lambda_{0}=2 n_{e f f} \Lambda
$$

meet

Bragg Grating Filter Transmission

$$
\Delta \lambda=\lambda-\lambda 0
$$

Δ is a measure of FWHM

Tunable FBGs for ROADM

Fabry-Perot Filters

\Rightarrow Can be tuned to a different wavelength by adjusting the cavity length (e.g., by piezoelectric crystal. High loss, polarization dependence and sharp passband limit use as WDM filter.

Multilayer Dielectric Thin-Film Filters (TFF)

DTMFs can be designed to have flat passbands, low lows, low PDL and polarization sensitivity as well as sharp frequency rolloff.

Dielectric reflector stacks

Glass substrate

Acoustooptic Tunable Filters

- Medium loss (greater than 6 dB)
- High PMD and PDL, polarization diverse architectures necessary
- Multichannel crosstalk issues

$$
\underset{\text { TE to TM conversion for } \lambda_{\mathrm{i}}}{\underset{\text { TE conversion for } \lambda_{\mathrm{i}}}{\eta_{T M}}} \frac{\eta_{T E}}{\lambda} \pm \frac{1}{\Lambda}
$$

Mach-Zehnder Interferometer Filters

Single Stage (can separate $1.3 \mu \mathrm{~m}$ from $1.55 \mu \mathrm{~m}$)

Multi Stage (for narrow passband)

Arrayed Waveguide Grating Router (AWGR)

Wavelength λ will be "routed" from input i to output j if it satisfies the following equation:

$$
n_{1} \delta_{i}^{\text {in }}+n_{2} \Delta L+n_{1} \delta_{j}^{\text {out }}=p \lambda(\text { for integer } \mathrm{p})
$$

Rowland Circle Construction

\Rightarrow Used in the design of AWGRs

Conclusions on filters

\Rightarrow Optical Filters, demultiplexers and demultiplexers have reached a very high level of reliability
\Rightarrow They are widely used in WDM applications
\Rightarrow Have application in dispersion compensation
\Rightarrow The issue of fast ($\mu \mathrm{s}$) tunable filter is still an open issue
\Rightarrow AOTF, though very promising, has not reached a total maturity
\Rightarrow Slowly (ms) tunable filters are now available
\Rightarrow Based on mechanical movements of a grating or an external cavity mirror

Optical Isolators

\Rightarrow Optical equivalent of a diode
\Rightarrow Used to prevent back reflections from fiber/air or fiber/semiconductor interfaces.
\Rightarrow Reflections can cause instability in SC lasers and increase interferometric noise.
\Rightarrow Typical specifications: \quad Low loss $=$ insertion loss $\sim 1 \mathrm{~dB}$.
High loss $=$ Return loss 40-50 dB.

Polarization independent optical isolators

Optical Circulators

Optical Switch Technology Switching Speed and Port Count

Photonic Crossconnects

Photonic Crossconnect Technologies

- 2D:
- Wavelength routed
- Bubble (Total internal reflection)
- Thermo-optic (Glass or silicon)
- Electro-optic
- LiNbO3, InGaAsP, GaAs, Liquid Crystal
- Mach-Zehnder, Fabry-Perot, Michelson Interferometers
- Acousto-optic
- Gain (splitter with gain on each arm)
- Er:SiO2, InGaAsP
- MEMS (MicroElectroMechanical Systems)
- 3D:
- MEMs

Optical Space Switches

Thermooptic Switch

Electrooptic Switch

SOA Gate Switch

Lecture 13, Slide 25

Thermo-Optic Switches

- 2D so small switches are best (<32 ports)
- Power consumption (0.5 W per switch)
- Speed (typically 6-8 ms)
- Loss ($1 \mathrm{~dB} / \mathrm{cm}$ typical)
- Size: 4" wafer for 16×16 switch

(Mach-Zehnder with thermal phase shift)

Micro Electro-Mechanical Switches - MEMS

\Rightarrow Micromachines are miniature machines built in ways similar to the way an integrated circuit is built.
\Rightarrow By patterning various layers of polysilicon as they are deposited, one can build structures which look like those shown below
\Rightarrow After the release step in which part of the structures are etched away, the devices are capable of motion

http://www.bell-labs.com/org/physicalsciences/projects/mems/mems1.html

2D MicroElectroMechanical Systems (MEMS) Mirrors

- Low loss for small sizes (< 32x32)
- Low PDL and PMD
- Digital operation
- Sticking due to friction an issue

Output Fibers

L. Lin,"Free-Space Micromachined Optical-Switching Technologies and Architectures," Topical Meeting on Photonics in Switching, Santa Barbara, CA (1999)

3D MEMS Switch

AOTF Multichannel OADM

Fulvio Arecco, Danilo Scarano and Steffen Schmid ECOC 1998

Agilent Bubble Switches

- No moving parts. Ink jet technology
- 2D so small switches (<40 ports) are best
- Wavelength range: limited
- Power consumption: heater power significant

Tunable Laser Technology

Medium to Fast Tuning: Multisection Semiconductor Lasers

Wavelength Switch/Router

Wavelength Interchanger

Time Switches

Random Access Memory

Storage Loop

Switched Delay Lines

\Rightarrow Switching fabric (R. Thompson, JLT)
\Rightarrow Resolve NxN switch output port contention (D. K. Hunter, JLT, 1993)
\Rightarrow Resolve internal blocking states, shared buffers (Boncek, Electron. Letts)
\Rightarrow Resolve wavelength switching conflicts (Kazovsky, CORD, PTL, 1995)
\Rightarrow Homodyne coherent crosstalk (M. Tur, Optics Letts., 1995)

Mixed Switching Fabrics

Integrated Optic Space Switches

Sources of Optical Crosstalk

\Rightarrow Crosstalk is generically a superimposition of two different useful signals
\Rightarrow It may be due to:
\Rightarrow Reflections and Recirculatory Paths
\Rightarrow Fiber and Amplifier Nonlinearities
\Rightarrow Photonic Switching and Gating Elements
\Rightarrow WDM Add/Drop Components
\Rightarrow WDM Multiplexers/Demultiplexers
\Rightarrow In traditional point-to-point link without optical add-drops, crosstalk mainly comes from nonlinear effects
\Rightarrow In next-generation all optical network, it can be generated by any device that handle the signal in the photonic domain

Digital Optical Crosstalk

\square Do signals from different optical digital sources mix incoherently or coherently?
$>$ Coherence determined by the rate of random laser phase fluctuations relative to the observation interval
$>$ The observation interval is determined by the bit rate

Assume ϕ i and $\Delta \phi$ uniform distributed on $[0,2 \pi]$

Incoherent and Coherent Crosstalk

\square Incoherent

Averages over many uncorrelated random phase shifts

Photodetector \longrightarrow
$P_{\text {int }}(\mathrm{t})$
$\phi_{\text {int }}(\mathrm{t})$

\square Coherent

Phases are stationary over and fields are correlated

Photodetector \longrightarrow

Acceptable Crosstalk levels

\Rightarrow Incoherent crosstalk can in most cases be kept under control with good optical filtering at the receiver
\Rightarrow Coherent crosstalk may easily become detrimental
\Rightarrow The coherently interfering channels should be at least 30 dB smaller than the useful channel
\Rightarrow Note that in mesh configuration, coherent crosstalk may be generated by the interaction of a signal with a delayed version of the same signal, that has followed another path

Received eye diagram from strong coherent crosstalk levels

