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Lecture 16: Advance Topics
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Fiber Transmission Link Design
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Design Considerations

 Total link length
 Repeater spacing
 Wavelength plan and Number of WDM Channels
 Maximum bit rate per WDM channel
 Performance and bit error rate (BER)
 Link cost
 Environmental conditions
 Reliability and failure rate
 Link upgrade

Note on upgradability:
Optical transmission systems have an
enormous potential capacity
Carrier often which to buy DWDM
systems that can be upgraded to a very
large number of channels, but the may
want to ligth only a few wavelengths at
the beginning of operation
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Link Design Issues

 Power Budget
 Rise Time Budget
 Dispersion management (Chromatic and PMD)
 Fiber Nonlinearities
 Optical Crosstalk
 Receiver sensitivity
 Power penalties
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Wavelength Plan

 Interchannel Spacing
 Large wavelength spacing

 Reduces requirements on components
 Allows future upgrade to higher bit rates

 Smaller channel spacing
 Allows more channels to be packed within amplifier gain bandwidth

 Wavelength Planning
 ITU standardization of wavelength position and channel spacing

  Ex. 100 GHZ=0.8 nm @ 1550 nm
 EDFA BW   1530 nm - 1564 nm
 Allows approximately 43 channels

100 GHZ 100 GHZ100 GHZ100 GHZ.     .     . .     .     .

ITU-T  Recommendation  G.692
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ITU-T  Recommendation  G.692

 This recommendation sets the worldwide standard for wavelength
allocation
 It uses absolute frequency (and not wavelength)

 The ITU grid is centered at 193.1 THz (1552.52 nm)
 The generation of an absolute frequency reference (AFR) is still an open issue

 The basic channel spacing is 100 GHz
 The recommendation already envisioned 50 and 25 GHz channel spacing,

which are now becoming a reality
 The recommendation considered only the so-called C-band (1530 - 1565

nm)
 Other band are available today:

 L-Band: 1565 nm - 1620 nm
 S-Band: 1485 nm  -1525 nm
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Wavelength Channel Separation

➯   The current ITU grid is reference to 100 GHz channel spacing. However, there is
significant effort to build systems that operate with 50, 25 and 10 GHz channel
spacing as filter technology improves.
➯   The limit on channel spacing, given that the laser and filter technology can meet
the requirements, comes down to the modulation bit rate.
➯   A general rule of thumb is that the wavelength channel spacing needs to be a
minimum of 5-10 time the channel bit rate.

Needs to be 5-10 times the bit rate

ω

First null ≈ B

Channel
interference
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Wavelength Registration

32 Channels of the ITU Wavelength Grid (referenced to vacuum)
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WDM Link Power Budget
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Rise Time Budget
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ISI: Inter Symbol Interference

-Tb

t

Transmitted signal
(without noise)
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Received and filtered 
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0
t

Received eye diagram
with significant ISI

Received eye diagram
without  ISI
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Cascaded frequency selective components

1 filter
2 filters
3 filters

➯   Leads to power penalty due to filter misalignment
➯   Leads to reduced risetime due to filter narrowing

Bandwidth Narrowing
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Optical Power Budget and Power Penalties

➯  Power budget : The minimum optical power available to overcome:
➯   Attenuation + power penalties of the optical path between the
transmitter and receiver
➯   Calculated as the difference between the minimum transmitter launch
power and the minimum receiver power.

➯   Channel insertion loss: the static loss of a link between a transmitter and
receiver including the loss of the fiber, connectors, and splices.
➯   The power penalties of a link are not attributes of link attenuation (unless
caused by a nonlinearity).
➯   Link power penalties include modal noise, relative intensity noise (RIN),
intersymbol interference (ISI), mode partition noise, extinction ratio, and eye
opening penalties including effects of fiber and amplifier nonlinearities.
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Power Penalty

In general, we can asses the degradation of a transmission system due to the
presence of certain impairments

Define the Power Penalty in the presence of impairments P1’, P0’, σ1’ and σ0’

PP = !10 log
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Power Penalties for other effects

 We consider in the next slides the power penalty for other effects, mostly
related to the transmitter or receiver devices
 Extinction ratio
 Timing jitter
 Laser intensity noise

 The power penalty is defined as the increase of optical power required to
overcome a given effects with respect to an ideal systems
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Extinction Ratio Power Penalty
Transmitter Extinction Ratio†1
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† An alternate definition of extinction ratio is P1/P0 where rex = ∞
 when P0 = 0
1 G. P. Agrawal, Fiber Optic Communications Systems, Wiley-
Interscience �

Note that in order to have negligible
penalty, the extinction ratio should be not
greater than 0.1, i.e, at least 10 dB
The typical value required in ITU standard
is around 12 dB
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Timing Jitter
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Timing Jitter Power Penalty
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Laser Intensity Noise

➬  Laser output exhibits random fluctuations in its output intensity, phase and frequency
➬  This random behavior results in Intensity Noise and  Phase Noise

Relative Intensity Noise (RIN) = Pavg/σp where σp is the noise variance

Frequency (GHz)

10-1 100 101

R
IN

 (d
B

/H
z)

-160

-110

Pavg

1 mW

2 mW

3 mW

σ2
source = σ2

RIN + σ2
MPN



ECE228B, Prof. D. J. Blumenthal Lecture 16, Slide 20

Intensity Noise Parameter Power Penalty
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This power penalty is critical for
analog systems and is typically not
as critical for digital systems
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Dispersion Induced Power Penalty

t
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Fiber Nonlinearities

➱   In principle, we can continue to increase the optical power at the
transmitter to overcome power penalties and limitations to SNR due to
amplifier and receiver noise sources

➱   But ! We if we try to increase the optical power per channel too
much, the signal will start to degrade due to distortion and crosstalk
caused by nonlinearities in the fiber and amplifiers
➱   This means that the effective receiver sensitivity will be decreased or
limited
➱   We have to limit the input power injected into the fiber in order to
avoid nonlinearities
➱   The limits depend on the dominant nonlinear mechanism, the link
and channel configurations and other link/network parameters
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SRS and SBS
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Fiber Four-Wave Mixing
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Spectral Power Penalty due to Modulation Chirp and Fiber
and Amplifier Nonlinearities

We have already seen how modulation chirp can impart a time dependent frequency
shift in the optical signal and produce spectral broadening. Later we will see how fiber
and amplifier nonlinearities can produce this same effect.

Chirp and spectral broadening

Modulator and
laser chirp

Fiber and amplifier induced
spectral  broadening

Fiber dispersion Optical Filtering

Power Penalty ISI

Jitter Pulse
distortion

Power Penalty
Jitter

Pulse
distortion

Pulse Broadening
Spectral broadening

Time varying phase
Time varying freq



Optical Time Division Multiplexing
(OTDM)
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Agile-WDM/OTDM Network
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A Broadcast WDM-OTDM Technique based on 1 to 8 Multiple
Wavelength Conversion with 2R Regeneration

Lavanya Rau, Bengt-Erik Olsson and Daniel J. Blumenthal, OFC 2001.
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OTDM to WDM Transmultiplexer

Lavanya Rau, Bengt-Erik Olsson and Daniel J. Blumenthal, Submitted to IEEE PTL, 2001

40
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WDM to OTDM Transmultiplexer

Bengt-Erik Olsson, Lavanya Rau and Daniel J. Blumenthal, IEEE PTL, September 2001

(4) 10 Gbps
Channels

40 Gbps
Channel


