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Lecture 5: Single Mode Laser
Designs
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 The output optical spectrum of a laser can contain one or many frequencies
 For high performance communications (2.5Gbps and higher), it is important to use lasers that emit

primarily at one frequency (wavelength).
 The SMSR is a standard measure of how single frequency is a laser is
 Consider the following symmetrical model for a semiconductor gain medium embedded in an optical

resonator where the gain peak is aligned with one of the resonator modes

FP cavity modes
geff(λ)
SC optical gain
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Side Mode Suppression Ratio SMSR (2)
 Consider the time-averaged (Stationary) optical power  for the dominant mode (N) and second most

dominant mode (N+1)
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 The SMSR is defined as

SMSR =
S
N

S
N +1

 For a gain spectrum much larger than the cavity mode spacing, assume there is minimal wavelength
dependence to the last term in the rate equations (assuming non-linear gain is zero)
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Mode Selectivity
 For single mode operation in a digitally modulated laser, numerical simulations of multi-mode rate

equations show that the dominant mode gain must exceed gain of all other modes by order 5 cm-1.

!gc = SMSR
nsp

2
h"vg#m # i +#m( )

1

Poff

 Where nsp is the spontaneous emission factor, vg is the mode group velocity and Poff is the power in a
“zero” bit

 Example: SMSR = 100; nsp = 3; hv = 0.8eV;  vg = c/neff = 3x108/4; αm = αi = 30 cm-1; Poff=0.025mW
 Δgc = 10cm-1

 Note: In practice it is very difficult to get (and keep) the gain peak aligned with a cavity resonance, so the
SMSR not only decreases, but the laser can be unstable between two modes that are competing for the
gain.
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Periodic Index Structures (1)
 Many of the SML lasers in use today rely on some form of periodic structure to create a wavelength

dependent loss designed to allow only one mode to dominate and a large resulting SMSR
 Examples include Distributed Bragg Reflector Laser (DBR) and the Distributed Feedback Laser (DFB)

 A periodic structure is defined as where the index of refraction varies periodically in the direction of
propagation only

n(z) = neff
'
+
!n

2
cos(2"

0
z)

Ex: neff = 4; Δn = 5%

 The Bragg period of the structure is defined as Λ = Mπ/β0, with M an integer. For M=1 (first order
structure), the free space Bragg wavelength can be used to describe the Bragg period

! =
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2neff
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Periodic Index Structures (2)

 Defining the grating vector (related to the periodic structure) kg = 2π/Λ and the coupling coefficient κ, the
wave equation for a field with free space propagation constant (k0 = 2π/λ) propagating in the periodic
medium is
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 Consider wavelengths λ  close to the Bragg wavelength λΒ such that β = β0 + Δβ and Δβ << β0

 Using the picture below, we describe the forward and backward propagating waves by

E(z) = R(z)exp(! j"0z) + S(z)exp( j"0z)

Λ

R(z)exp(! j"0z)S(z)exp( j!0z)

β0−β0
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Periodic Index Structures (3)
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 Inserting the backward and forward propagating field into the wave equation with periodically varying
index of refraction

 Which can be described by the coupled-mode equations

!R (z) + j"#R(z) = $ j%S(z)

!S (z) $ j"#S(z) = j%R(z)
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Solution to Coupled Mode Equations (1)

 The coupled mode equations and wave equation describe the field in the periodic index structure.
 Assuming there are boundary conditions (e.g. R(0) and S(0) are known), we can write the fields as
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 Where we have defined the matrix Fper(L) and γ2=κ2-Δβ2

 Note that Fper relates the right and left propagating waves at the left side (z=0) of the periodic index
structure to the right and left propagating waves a the right side (z=L) of the structure.
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Solution to Coupled Mode Equations (2)

 We can define the field reflection coefficient rper and the power reflection coefficient Rper at z=0 as
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 Where the final simplification for rper is for κL very close to ΔβL
  Note that

 | rper| increases with increasing κL which means a higher coupling coefficient leads to a stronger
reflection.

 | rper| decreases with increasing ΔβL which means the reflection becomes smaller when the
wavelength moves away from the Bragg reflection peak.

 The reflection experiences a π/2 phase shift when Δβ = 0.
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Distributed Bragg Reflector (DBR) Lasers (1)

Bragg Grating = wavelength
dependent mirror

DBR Principle

Butt-Joint DBR

 Bragg reflector acts as wavelength dependent mirror
 Long gratings and weak coupling coefficient realizes a mirror with high reflectivity and

narrow reflection peak (spectrum)
 The gain condition  and net modal gain can be written as R1Rper exp(2gnet LA ) = 1
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Power that leaves active
region at z=0

Lasing quality depends strongly
on quality of interface
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Distributed Bragg Reflector (DBR) Lasers (2)

 To understand how the reflectivity varies as the wavelength shifts away from the Bragg
wavelength, we introduce the normalized parameter
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 At wavelengths near the Bragg wavelength, a periodic structure of length L, and an incoming
field of magnitude R(0) at z=0 and S(L) = 0 at z=L

R(z) =
cosh ! z " L( )( )
cosh !L( )

R(0)
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Distributed Bragg Reflector (DBR) Lasers (2)

 At the Bragg wavelength, Δβ=0, which means γ = κ, and the reflectivity only depends on κL

rper =
S(0)

R(0)
=
! j sinh "L( )
cosh "L( )

= tanh "L( )

Rper = rper
2

= tanh2 "L( )

Greater than or equal to
cleaved facet

 If we now look at the reflectivity as a function
of wavelength offset from the Bragg
wavelength as a parameter of κL. The
reflectivity function is periodic with nulls at
(assuming ΔβL> κL)

 The reflection bandwidth for the Bragg mirror
is
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Distributed Bragg Reflector (DBR) Lasers (3)

 Recall that in this design the Bragg mirror is only one of the mirrors. The other mirror is a
broadband FP type mirror. There are designs where a Bragg mirror is used for both mirrors.

 A key question is then, how many FP modes are there within the primary reflection mode of
the Bragg mirror? If there is more than one, then we will not have a single mode laser

 Lets plug in the coupling coefficient into the standard mode spacing equation for a FP laser

 Single mode operation occurs when only one cavity mode fits under the Bragg reflector
bandwidth, or
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Distributed Feedback (DFB) Lasers

 DFB lasers employ Bragg mirrors. The mirror is “distributed” through the laser gain medium
instead of at the ends like with DBR lasers.

 First consider the case of  a DFB laser with non-reflecting facets (e.g. semiconductor facets are
highly AR coated)

 To allow for the presence of
gain, we need to modify Δβ  with
Δβ +jg0. In this example there are
no mirrors, so the matrix Fper
describes the fields and the
oscillation condition for lasing is
(Fper)22 = 0.
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Distributed Feedback (DFB) Lasers

 The wave equation sets the relation between gain and the distributed mirror parameters as

! 2 =" 2 # ($% + jg
0
)
2

 And the oscillation condition can be written as

! L coth(! L) = " j(#$L + jg
0
L)

 The gain and phase for the DFB are tightly coupled in contrast to the FP laser. The complex
number in the above equation determines the gain and phase. The coupling coefficient and
length together determine the possible values for ΔβL and g0L. The oscillation condition will
yield a set of solutions, each with a wavelength (given by Δβ)  and gain for that wavelength
(given by g0).


