

# Lecture 6: Single Mode, Tunable Lasers

### Distributed Feedback (DFB) Lasers

⇒ Last lecture we talked about uncoated DFB lasers, where the structure could be treated as a periodic matrix modified to include gain  $(\Delta\beta + jg_0)$ , and setting  $(F_{per})_{22} = 0$ . The oscillation condition is repeated below



To understand how power is emitted from this structure consider the following energy conservation relation

$$\underbrace{\left|\left|R(L)^{2}\right| - \left|S(L)^{2}\right|\right]}_{\sim \text{Power leaving}} + \underbrace{\left|\left|S(0)^{2}\right| - \left|R(0)^{2}\right|\right]}_{\sim \text{Power leaving}} = \underbrace{2g_{0}\int_{0}^{L}\left[\left|R(z)^{2}\right| + \left|S(z)^{2}\right|\right]dz}_{\sim \text{Energy stored in}}$$

## Distributed Feedback (DFB) Lasers

- Using the oscillation condition to solve numerically for  $g_0L$  as a function of normalized detuning ΔβL parameterized as a function of κL, we see in the figure on the right
  - ⇒ Increased feedback ( $\kappa$ L) results in lower required gain ( $g_0$ L)
- $\Rightarrow$  There is an inherent symmetry in the cavity, solutions for both ΔβL and ΔβL
  - Means that the DFB is inherently a two mode (not single mode) laser!



- ⇒ To make a single mode DFB laser there are some design changes we can leverage
- $\Rightarrow$  AR coat one facet and leave the other facet cleaved.
  - Provides mode selectivity by matching only a subset of distributed mirror reflection (modes) with phase of end mirror. But this can itself be unstable and random.
- ⇒ Phase shifted distributed Bragg grating.
  - ⇒ Places a mode at the Bragg wavelength AND it is the lowest loss mode.





#### **Tunable Lasers**

ECE228B, Prof. D. J. Blumenthal

# Wavelength Tuning Approaches

⇒ Mechanical

⇒ External cavity, MEMs mirror

⇒ Thermal

⇒ Change affects mirror reflectivity as a function of wavelength

⇒ Change affects phase or gain of semiconductor laser medium

#### ⇒ Current/Voltage

- ⇒ Cavity phase adjustment
- ⇒ Cavity mirror vs. wavelength adjustment
- ⇒ Cavity filter wavelength adjustment

# Wavelength Tuning Metrics

| <b>Tuning Parameter</b>       | Description                                                                                                                                |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Tuning Range                  | Output wavelength range (that may need to meet a set of specifications)                                                                    |
| Tuning Speed                  | Time it takes to tune between two output wavelengths (stable)                                                                              |
| Tuning Latency                | Time it takes for laser (and control electronics) to fully tune after change is requested.                                                 |
| Tuning Continuity             | Degree to which all wavelengths are available continuously or discontinuously as a function of changing a control parameter (e.g. current) |
| Tuning Uniformity             | Change in optical characteristics as laser is tuned (and not controlled with feedback circuit). Example includes output power.             |
| Tuning Stability              | Short and long term variations (drift) between control (e.g. current) and desired wavelength.                                              |
| Tuning<br>Accuracy/Resolution | Error/Precision of achieving a desired wavelength                                                                                          |
| Optical<br>Characteristics    | These include optical power, SMSR, linewidth, bit-rate, chirp and extinction ratio if direct modulated.                                    |

ECE228B, Prof. D. J. Blumenthal

## **Tuning Continuity**

- ➡ Continuous: Laser wavelength is tuned smoothly with change in current/voltage, down to resolution of linewidth. Ideally this approach yields simple control with wide range and complete wavelength coverage.
- Discontinuous: Typically involves tuning the gain over many cavity modes. This leads to a discontinuous behavior. This approach can reach a large tuning range but cannot access all of the wavelengths.
- Quasi-Continuous: This regime is achieved by tuning cavity modes over small overlapping regions of continuous tuning operation. Both large range and complete wavelength coverage are possible with a tradeoff in control complexity.



## Cavity Gain (Loss) Tuning

- $\Rightarrow \text{ Tuning } g_c(\lambda) = \Gamma g_a(\lambda) \alpha_i \alpha_m(\lambda) \text{ can be}$ achieved by shifting either
  - ⇒ Material gain  $g_a(\lambda)$  or
  - $\Rightarrow$  Mirror loss  $\alpha_{\rm m}(\lambda)$
- As the gain (loss) is tuned, the laser clamps  $g_c(\lambda) \approx 0$  at a wavelength that is not the gain peak.
- $\Rightarrow$  As the gain (loss) is tuned such that

$$\Delta \lambda_p \leq \frac{\Delta \lambda_m}{2}$$

- ⇒ The laser will laser in the nearest (lowest loss) mode, which in this example is  $\lambda_N$
- $\Rightarrow$  As the gain (loss) is tuned such that

$$\Delta \lambda_p \geq \frac{\Delta \lambda_m}{2}$$

- ⇒ The lasing mode  $\lambda_N$  will cease to lase and  $\lambda_{N-1}$  will start lasing, etc.
- ⇒ Only discontinuous, discrete modes spaced by  $\Delta\lambda_m$  are available using this technique
- ⇒ Note the SMSR only peaks every  $\Delta \lambda_m$  and otherwise is poor





#### **Comb-Mode Spectrum Tuning**

⇒ Keeping  $\lambda_p$  fixed and instead tuning the complete mode spectrum ( $\lambda_i$ ) such that<sup>†</sup>

$$\lambda_i = \lambda_i^0 + \Delta \lambda$$

- $\Rightarrow$  The mode spacing can be adjusted by
  - ⇒ Varying the physical length of the laser cavity, as is done with an external cavity laser OR
  - ⇒ Varying the index of refraction of the cavity medium through current or voltage control
- ⇒ The gain peak stays fixed, however the gain curve moved up and down as the dominant lasing mode is clamped.
- ⇒ Laser will linearly tune until the cavity has been changed by  $\Delta \lambda_c = \Delta \lambda_m$ , or one free spectral range, then the output will reset back to original wavelength.
- ⇒ So the tuning range using comb tuning only is  $\Delta \lambda_m$



*†* Note that cavity length changes in spectrum are uniform in frequency but not in wavelength, so this is a good approximation over some limited (but relevant here) optical bandwidth.
ECE228B, Prof. D. J. Blumenthal

#### Simultaneous Gain and Comb Tuning

- ⇒ By tuning both  $\Delta \lambda_p$  and  $\Delta \lambda_c$  at the same time, quasi-continuous tuning can be achieved
- A good example is to track the comb peak with the gain peak such that  $\Delta \lambda_p = \Delta \lambda_c = \Delta \lambda$
- ⇒ Continuous range tuning is limited by the smaller of  $\Delta\lambda_{tune,p}$ or  $\Delta\lambda_{tune,c}$  which are the limits of gain peak wavelength tuning and comb spectrum tuning respectively
- ⇒ Quasi-Continuous Tuning Condition:
  - $\Rightarrow \text{ For of } \Delta\lambda_{\text{tune},p} \ge \Delta\lambda_{\text{tune},c} \text{ and } \\ \Delta\lambda_{\text{tune},c} \ge \Delta\lambda_{m},$



ECE228B, Prof. D. J. Blumenthal

#### Free-Carrier Plasma Effect

- ⇒ Most frequently used tuning mechanism today and results in the largest tuning ranges reported to date
- ⇒ For waveguides with bandgap energy much larger than the photon energy of interest, the dominant effect is carrier polarization induced changes in ∆n due to current injected electron-hole plasma
- ⇒ A second effect of equal magnitude is change in index due to change in band-to-band absorption shape due to current injected electron-hole plasma
- ⇒ The index change, resulting loss change (via Kramers-Kronig) and equivalent linewidth enhancement factor due to carrier injection N=P in an un-doped semiconductor is given by

$$\begin{split} \Delta n' &= -\frac{q^2 \lambda^2}{8\pi^2 c^2 n \varepsilon_0} \left( \frac{1}{m_e} + \frac{1}{m_h} \right) N = \beta_{pl} N \\ \alpha_{pl} &= -2k_0 \Delta n'' = \frac{q^3 \lambda^2}{4\pi^2 c^3 n \varepsilon_0} \left( \frac{1}{m_e^2 \mu_e} + \frac{1}{m_h^2 \mu_h} \right) N = k_{pl} N \\ \alpha_{H,pl} &= -\frac{\Delta n'}{\Delta n''} = 2k_0 \frac{\Delta n'}{\alpha_{pl}} \end{split}$$

ECE228B, Prof. D. J. Blumenthal

#### Free-Carrier Plasma Effect

#### ⇒Examples:

⇒Phase Tuning: Current injection is used to tune the bandgap (refractive index) of a passive waveguide

⇒Mirror tuning: Current injection is used to tune the effect Bragg wavelength of a periodic waveguide mirror.

⇒ Bragg Mirror Tuning:

⇒The change in effective index of refraction for the Bragg material due to injected carriers is

$$\Delta n_{eff} = \Gamma_t \Delta n_t$$

⇒The resulting change in the Bragg wavelength due to the injected current density is

$$\Delta \lambda = \frac{\beta_{pl} \Gamma_t \lambda_B}{n_{g,eff}} N$$



# Thermal Tuning of DFB Lasing Wavelength

⇒ The gain peak (g<sub>p</sub>) of semiconductor gain is dependent on temperature and can be thermally shifted. This is due to temperature dependence of the bandgap energy

 $\Rightarrow$  Typical gain peak shift is 0.5nm/°*K* 

⇒ A change in temperature also changes the index of refraction. For the DFB this shifts the Bragg wavelength

 $\Rightarrow$  Typical resonator frequency shift is 0.5nm/°<sub>K</sub>

⇒ Note that for the DFB, the lasing wavelength is determined by the Bragg wavelength (not the gain peak). However the shift in gain peak will determine the laser output power.

#### Longitudinally Integrated Tunable Structures

#### ⇒ 2-Section DBR with passive Bragg tuning section



 $\Rightarrow$  3-Section DBR with passive Bragg tuning section

![](_page_13_Figure_4.jpeg)

ECE228B, Prof. D. J. Blumenthal

Lecture 6, Slide 14

9.4 nm

80

60

#### Widely Tunable Integrated Structures

#### ⇒ Sampled Grating DBR Lasers

![](_page_14_Figure_2.jpeg)

![](_page_14_Figure_3.jpeg)

Lecture 6, Slide 15

## GCSR: Grating Coupled Sampled Reflector

![](_page_15_Figure_1.jpeg)

Phase

#### GCSR Tuning Curves

![](_page_16_Figure_1.jpeg)