

Lecture 1: Introduction to Fiber Optic Networks

Fiber-Optic Network Applications

ECE 228C, Spring 2008, Prof. Blumentha

Lecture 1.2

Network Classification

Public Networks

Enterprise Networks

Evolution of Fiber-Optic Point-to-Point Transmission

	Multimode fiber-optic waveguides >5dB/km attenuation	Low mod fibe @ 1 Ea	v loss Single de optical rs 1 dB/km 310 nm rly 80s	Operation in the low loss window of 0.2 dB/km @ 1550 nm but high dispersion @ 1550 nm Mid to L	.ate 80s	Multichannel erbium doped fiber amplifiers (EDFAs) @ 155 nm deployed. Late 80s to Early	0 y 90 s	AT&T True Wave Fiber an Corning Large Optical Core Fiber reduce fiber FWM	d
	Early 70s Room temperature GaAs LEDs and multimode FP Lasers @ 830 nm	1	Multimode Fabry-Perot 1310 nm lasers	Development of single frequency DFB 1310 nm and 1550 nm lasers	New dispersion shifted fiber yields Zero dispersion @ 1550 nm and 0.5 dB/km loss @ 1310 nm		Mi Mu WI Cha cha lim fou (FV	d 90s Itichannel DM @1550 nm. nber of nnels and nnel spacing ited by fiber r-wave mixing VM)	Mid 90s Optical Solitons, dispersion compensation
•	1st Generation		2nd Generation	3rd Generati	on	4th G	enera	tion	5th Generation

Transmission Bandwidth Evolution

Capacity and Repeater Spacing

Evolution of Fiber-Optic Networks

Point-to-point fiber links connected to electronic switching equipment	High performand data communica Serial HIPPI star introduced, fiber 1.2 Gbps. Fiber Channel standard introduced at 200 400 and 800 Mb Mid to Late 90	ce tions. ndard at d 0, ps. s	Introduction of Optical Channel (OC layer by the ITU. Routing in the optica layer.	C) al	Optical wavelength conversion. Optical regeneration. Optical packet switching. Late 00s
Late 80s First MANs. 100 Mbps FDDI and 200 Mbps ESCON for data communications. SONET and SDH for Telecommunications.		Layered Networking. ATM and IP over SONET.	Late 90s Fixed wavelength add/drop multiplexing. Protection and survivability in the optical layer.	Early to late 200 Reconfigurable WDM add/drop multiplexers. Optical crossconnects	00
4	lst Generation		∢ 2nd Ge	eneration	→ → → → → → → → → → → → → →

Networking Overview

Introduction

This session briefly introduces some issues related to communication networks

- \Rightarrow The concept of network layers
- ⇒ Circuit and packet switching
- \Rightarrow The most important network protocols
- ⇒ Network management (survivability, restoration etc)
- ⇒ Transparency
- ⇒ Scalability
- ⇒ It is meant to give a common terminology and framework for the next sessions
 - \Rightarrow It is not strictly related to *optical* networking

Bibliography on Networking

• On the OSI model:

- **Computer Networks**, 3rd edition, *A.S. Tanenbaum*, Prentice-Hall Inc, 1996, (one of the most famous texts in the field)
- **Computer communications**, 2nd edition, *K.G. Beauchamp*, Chapmen & Hall, 1993 (a good overall view of networks)
- On SONET/SDH, ATM and high speed networking
 - Broadband Networking, M. Sexton, A. Reid, Artech House, 1997
 - High speed digital transmission networking, G. Held, J. Wiley&S, 1999

Who's who in standards

⇒ ISO: International Standard Organization

- \Rightarrow an international agency for the development of standards in many areas
- ⇒ currently 89 member countries including: Britain, France, USA
- ⇒ consists of several national standard bodies
- ⇒ ITU: International Telecommunication Union (formed in 1993, ex- CCITT International Telegraph and Telephone Consultative Committee)
 - ⇒ The ITU-T publishes standards (ITU-T Recommendations) covering all fields of telecommunications except radio aspects
- ⇒ IEEE: Institute of Electrical and Electronic Engineers
 - the IEEE standards for local area networks have subsequently been used by ISO as the basis for its standards on LANs
- ⇒ ANSI: American National Standard Institute
- ⇒ IETF: Internet Engineering Telecommunications Forum
 - ⇒ IP centric network based standards

The OSI model

- ⇒ The Open System Interconnection (OSI) model developed by ISO is often taken as a reference in communication networking
- \Rightarrow It is based on a seven *layer* structure

Layer	Name
7	Application
6	Presentation
5	Session
4	Transport
3	Network
2	Data Link
1	Physical

- It is mostly a theoretical model that describes how applications on any network maycommunicate with each other
 - ⇒ Real protocols do not map *exactly* on OSI
 - ⇒TCP-IP has 6 layers
 - ⇒SONET/SDH has 4 layers
- ⇒ Still, the OSI ideas and terminologies are common to *most* protocols

OSI layers

- OSI is mainly intended for data-centric networks (packets), i.e. for computer interconnects
- Basic idea:connecting computers, transmitters and receivers together in an open system
- \Rightarrow Each layer:
 - \Rightarrow Receives information from the layer above
 - \Rightarrow Adds some functionality
 - \Rightarrow Passes the information the the layer below
- \Rightarrow OSI thus defines:
 - \Rightarrow The functions of each layer
 - \Rightarrow The interfaces between layers

Layer 1: Physical Layer

- Defines the physical and electrical and optical characteristics of the network
 - Concerned with the description of the physical circuits and the transmission of bits
 - ⇒ Ensures that when one side sends a "1", the other side of the "wire" receives a "1" with a high level of reliability
 - \Rightarrow For example, defines:
 - \Rightarrow Voltages or power levels used to represent a 1 and a 0
 - \Rightarrow Bit rate, modulation format
 - ⇒ Handshaking required for transmission to take place
 - \Rightarrow Other physical parameters, such as connector types, cable type, etc

Layer 2: Data Link Layer

- \Rightarrow Turns the raw transmission facility into an error free digital link
 - \Rightarrow the data link layer breaks data into frames
 - \Rightarrow provides error detection and correction mechanisms upon these frames
- \Rightarrow To achieve this target, the Data link needs to:
 - \Rightarrow recognize the boundaries of each frame
 - \Rightarrow determine the correct sequence of frames
 - ⇒ regulate how many frames arrive over a specific period
- ⇒ When several transmitters share the same physical channel, the Data link layer has to define a Medium Access Control (MAC) protocol
- \Rightarrow Layer 1 and 2 are not meant to take into account the network global structure
 - They mainly implement a reliable way to transmit packets between two points of the network connected by a "wire"

Layer 3: Network Layer

- It provides the transfer of data between two hosts on a given network topology
 - \Rightarrow the simplest connection may be a direct link between two stations
 - ⇒ alternatively, at the other extreme, the connection may be over many different networks which are linked together via gateways
- ⇒ the Network Layer must therefore be responsible for
 - the establishment, maintenance and termination of the connection between two hosts across any intervening communications facility
 - ⇒ it must deal with problems of addressing, routing and prevention of bottlenecks
 - \Rightarrow some accounting to detect bottlenecks before they arise!

Layer 4: Transport Layer

- ⇒ Layer 4 primary task is to hide all the network dependent characteristics from the layers above it
 - ⇒ Provides transparent data transfer
 - ⇒ All the protocols defined for the transport layer will only need to be implemented on the host computers and not on any intermediate computers in the network
- \Rightarrow The transport layer:
 - establishes and maintains a logical connection with the corresponding transport layer on a remote host
 - \Rightarrow uses this connection to transfer data

Layers above Layer 4

⇒ Layers 5 to 7 (Session, Presentation and Application) are related to user interfaces, and are outside the scope of this course

- \Rightarrow Session layer
 - ⇒ the period of time for which two users remain logically connected (even though not transmitting data continuously) is known as a session
 - \Rightarrow purpose of the session layer is to provide a user-oriented connection service
 - \Rightarrow a session protocol may provide a user interface by adding to the basic connection service
- ⇒ Presentation Layer
 - \Rightarrow presentation layer is concerned with the format of the data being exchanged
 - \Rightarrow it provides a set of data transformation services, typically including formatting and data translation
 - ⇒ e.g.. if one user might use ASCII codes for character representation whereas another user might use EBCDIC
 - \Rightarrow the presentation layer provides the code conversion
- ⇒ Application Layer
 - ⇒ the highest layer in the reference model and is the environment in which user's programs operate and communicate
 - ⇒ This layer therefore contains management functions and generally useful mechanisms to support distributed applications
 - \Rightarrow protocols are provided for functions such as file transfer and electronic mail (ftp, mail, telnet)

Layered Network Architectures

⇒ Note that at the two ends of the connection, the layering goes up to the highest OSI layers, while intermediate nodes may implement just 2 or 3 levels

Circuit and Packet switching

⇒ Circuit switching

- ⇒ Typical of traditional voice applications (standard telephony)
- ⇒ A given communication is set up on a given path along the network, then it is available (apart from failure) till the end of the connection
- \Rightarrow A given bandwidth is totally and always available for all the duration of the connection
- ⇒ Example: SONET/SDH

⇒ Packet switching

- ⇒ Typical of data-centric applications (networks of computers)
- \Rightarrow A packet (organized group of bits) is sent along the network, in a connectionless way
- ⇒ Subsequent packets may be routed differently along a mesh network (datagram)
- \Rightarrow Some packets may be lost along the link
- \Rightarrow The available bandwidth depends on the network load
- ⇒ Examples: TCP-IP, Ethernet, *postal service*

Comments on the OSI model

- The OSI layering concept is at the basis of all modern communication networks
- ⇒ Even though OSI was mainly studied for packet-switched computer networks, it anyway maps quite well on other kind of networks, such as
 - ⇒ Connection-oriented, circuit switches networks, based on SONET/SDH
 - ⇒ Virtual circuits (packets in a Connection-oriented approach), based on ATM
 - ⇒ Simpler protocols, such as Ethernet, FDDI, etc

Stack of protocols

 \Rightarrow In most cases, several protocols are used in a layered approach

- ⇒ For example, in backbone networks, IP is typically carried over ATM, which in turn is carried on SONET
- ⇒ Each of the protocols then has its own layering, which is always somehow mapped on the OSI standard
 - SONET has its own three layers, approx. corresponding (even though with different names) to the OSI Physical, Data and Network layers
 - The SONET network layer gives to ATM a pointto-point network, over which the ATM data layer is based
 - ⇒ Again, the procedure is iterated for the IP over the ATM network layer

Stack of protocols

- ⇒ Each layer of each protocols must give to whatever reside above it a reliable service, with respect to given specifications
- \Rightarrow The interfaces among layers have to be defined in detail
 - ⇒ In the interfaces between layers of a given protocol, the packet is partially modified, by adding some information, coding, etc
 - In the interfaces between different protocols, packets may be completely reorganized
- The interworking among different protocols (and different vendors) is a very important and difficult issue
 - Moreover, particularly in backbone transport network, a extremely high degree of reliability is required

Network Operation and Management

⇒ A communication network is not only a "raw transport" network, but should implement several other functions, such as:

- ⇒ Configuration Management
 - ⇒ Manage the setting up and taking down of connections. Dynamic allocation of network bandwidth and provisioning.
- ⇒ Performance Management
 - \Rightarrow Manage monitoring of channel, link, node and network performance.
- ⇒ Fault Management
 - \Rightarrow Responsible for detecting failures and restoring traffic.
- ⇒ Security Management
 - ⇒ Manage data protection, encryption, coding
- ⇒ Accounting Management
 - ⇒ Manage billing and other record keeping functions

Network Survivability/Fault Management

- ⇒ Survivability: The network's ability to continue to provide services on spare network capacity in the presence of failures
- ⇒ It is a fundamental requirement in backbone network, whose failure rate should be extremely low
 Restoration: a more complex

Network Operation and Management

- ⇒ On complex, mesh network, one of the most difficult task is how to efficiently disseminate link, node and network state information
- ⇒ Several network element must be "network-aware"

SNMP Simple Network Management Protocol CMIP Common Management Information Protocol Lecture 1.28

Network and Connection Transparency

- \Rightarrow There is often some ambiguity on the concept of transparency
- ⇒ When applied to level 2 and 3, we should talk about the "degree of <u>network</u> <u>transparency</u>"
 - ⇒ Support different network/link/physical layer types (SONET, ATM, IP, etc.)
 - ⇒ Support traffic with different characteristics (bursty, non bursty, connection, connectionless, different quality)
- ⇒ When applied to level 1 (physical layer) i.e., to raw physical transmission, we should talk about the "degree of <u>physical transparency</u>"
 - ⇒ Support different bit-rates
 - ⇒ Support different modulation formats
 - ⇒ Support different power levels
- One of the main advantages of second generation optical networks it their potential to give some form of physical transparency, and to give to the higher layers a total network transparency

Network Scalability

- ⇒ Scalability is another important concept in communication networks
- \Rightarrow A successful network architecture MUST be reasonably scalable, i.e.:
 - It should be able to grow (i.e., to cope with increasing traffic demand) without requiring to completely re-design the network
- The scalability strategies should work in such a way that a network upgrade can be implemented while the rest of the network is operating (i.e. without requiring out-of-service in the rest of the network)
- One of the main advantages of second generation optical networks it their potential high degree of scalability

Multiplexing & Grooming

- ⇒ Multiplexing (or traffic grooming) is the set of techniques that aggregate traffic generated from different sources over the same physical medium
- In transport networks, efficient multiplexing/demultiplexing is one of the key issues
 - ⇒ Note that a phone call requires 64 Kbit/s, meaning that approx. 156,000 phone calls may travel simultaneously on a single channel at 10 Gbit/s
- ⇒ In order to simplify the multiplexing problem, usually multiplexing is done on a hierarchical basis

Hierarchical Multiplexing

- ⇒ In a hierarchical multiplexing, each multiplexing level has, at its input, a set of tributaries at a given bit rate
 - ⇒ The bit rate of each of the tributaries increases going up in the multiplexing hierarchy
 - \Rightarrow Again, like in network layering, the basic idea is to "iterate" the same process
- \Rightarrow Hierarchical multiplexing allows to:
 - ⇒ Maintain a reasonable multiplexing/demultiplexing complexity (due to the "iteration" idea)
 - ⇒ To use, at each level, the proper protocols and transmission formats most suitable for that particular level of data grooming
 - ⇒ To allow, by proper interfaces, multiplexing of traffic at potentially very different data rates (multi-service)

Multiplexing and Transport Networks

- ⇒ A transport network, from a very general point of view, has to carry an extremely heterogeneous variety of data traffics, ranging from:
 - \Rightarrow Voice channels at 64 Kb/s
 - ⇒ Dedicated channel at extremely high bit rate, up to hundreds of Mbit/s and more (usually leased lines)
- ⇒ The "edges" of the network tends to carry a very high number of tributaries at fairly low bit rate (which tends anyway to increase with the diffusion of new services for the final user)
- ⇒ The "core" of the network has to carry a relative lower number of tributaries at very high bit rates
- ⇒ Different levels of grooming may require different approaches, in terms of:
 - \Rightarrow Protocols
 - ⇒ Physical transmission
 - ⇒ <u>Multiplexing devices/techniques (TDM, WDM, SDM</u>)

Multiplexing and Optical Networks

- ⇒ In most of today transport network, all multiplexing functions are performed by electronic equipment (hubs, switches, routers, etc)
 - \Rightarrow These equipments are extremely complex
 - ⇒ Protocols are implemented in software (or firmware)
 - ⇒ They can be thought as huge workstations whose task is the multiplexing, demultiplexing and routing of data (besides may other higher layers functions)
- ⇒ As soon as, in the multiplexing hierarchy, the aggregate bit rate is sufficiently high, fibers are used as the preferred transmission medium
- ⇒ Transport networks are today nearly completely based on optical transmission

⇒ When the traffic grooming has reached the "wavelength level", then it is possible to use the photonic domain also for multiplexing-routing functions

On the Definition of Optical Networks

⇒ The term "Optical Networks" is used in different ways

- ⇒ In some scenario, a network is said to be "optical" provided that fiber is used "somewhere" along the network links
- \Rightarrow Some authors uses the following convention:
 - ⇒ Optical networks (= first generation optical networks)
 - \Rightarrow Fiber is used for transmission, the rest is electronic
 - ⇒ All-Optical networks (= second generation optical networks)
 - \Rightarrow Fiber is used for both transmission and some form of routing functions
- ⇒ More ambiguity in the terminology arises in those solutions where a mix of optical and electrical routing is performed
- ⇒ Mostly, even when talking about all-optical networking, the typical functions implemented in optics are circuit-switching functions
 - ⇒ Usually, if packet-switching is performed (like in some advanced research testbeds), the used term is "all-optical packet switching"