Lecture 10

Congestion Parameter and Queuing Delay

\Rightarrow Define congestion parameter $\lambda_{\text {max }}=\max _{\mathrm{ij}}\left\{\lambda_{\mathrm{ij}}\right\}$
\Rightarrow We must determine variables $\lambda_{\mathrm{ij}}^{\text {sd }}, \lambda_{\text {max }}$ and λ_{ij}
\Rightarrow The process of determining $\lambda_{\mathrm{ij}}{ }^{\text {sd }}, \lambda_{\text {max }}$ and λ_{ij} is equivalent to the problem of finding a routing algorithm
\Rightarrow Example:
\Rightarrow Packet transmission times are exponentially distributed (Poisson Process) with mean time $1 / \mu$ seconds.
\Rightarrow Model each link as an $M / M / 1$ queue, where it is assumed that traffic offered to a link in the network is independent of the traffic offered to other links.
\Rightarrow The average queuing delay under these assumptions is

$$
d_{i j}=\frac{1}{\mu-\lambda_{i j}}
$$

Throughput

\leftrightharpoons Throughput is defined as minimum value of the offered load for which any link experiences infinite delay, which happens when

$$
\lambda_{\max }=\max _{i j} \lambda_{i j}=\mu
$$

\Rightarrow Performance objective

$$
\operatorname{Minimize}\left(\lambda_{\max }\right)
$$

\Rightarrow Subject to the following flow conservation at each node

$$
\sum_{j} \lambda_{i j}^{s d}-\sum_{j} \lambda_{j i}^{s d}=\left\{\begin{array}{l}
\lambda^{s d} \text { if } s=i, \\
-\lambda^{s d} \text { if } d=i, \\
0 \text { otherwise, }
\end{array} \quad \text { for all } s, d, i\right.
$$

\Rightarrow Subject to the total flow on a logical link

$$
\begin{array}{ll}
\lambda_{i j}=\sum_{s, d} \lambda_{i j}^{s d}, & \text { for all } i, j, \\
\lambda_{i j} \leq \lambda_{\max }, & \text { for all } i, j, \\
\lambda_{i j}^{s d} \leq b_{i j} \lambda^{s d}, & \text { for all } i, j
\end{array}
$$

Throughput

\Rightarrow Subject to degree constraints

$$
\begin{array}{ll}
\sum_{i} b_{i j} \leq \Delta, & \text { for all } j, \\
\sum_{j} b_{i j} \leq \Delta, & \text { for all } i .
\end{array}
$$

\Rightarrow Subject to bidirectional lightpath constraint

$$
b_{i j}=b_{j i}, \quad \text { for all } \mathrm{i}, j .
$$

\Rightarrow Subject to Nonnegativity and integer constraints

$$
\begin{gathered}
\lambda_{i j}^{s d}, \lambda_{i j}, \lambda_{\max } \geq 0, \quad \text { for all } \mathrm{i}, j, s, d \\
b_{i j}
\end{gathered} \in\{0,1\}, \quad \text { for all } \mathrm{i}, j . ~ \$
$$

Throughput

\Rightarrow We associate packets routed between pair (s, d) as the flow of a commodities.
\Rightarrow The flow conservation constraint at node i yields the net flow out of node i for one commodity (s, d).
\Rightarrow The net flow is the difference between the outgoing and ingoing flows.
\leftrightharpoons The flow conservation is 0 if a node is neither a source or destination of that particular commodity.
\Rightarrow If node i is the source of the flow $(i=s)$ the net flow $=\lambda^{\text {sd }}$
\Rightarrow If node i is the destination of the flow $(i=d)$ the net flow $=-\lambda^{\text {sd }}$
\Rightarrow No more than Δ links into and out of each node.

LTD Algorithms

\Rightarrow The problem to solve sets a condition that the

$$
b_{i j} \in\{0,1\}, \quad \text { for all } \mathrm{i}, j .
$$

\Rightarrow However, this type of problem can be very difficult and time consuming (numerically) to solve. If the solution is a linear funcion of the variables, then we call the program that can be used to solve type of problem a Linear Program (LP). If the variables are also restricted to integer values, we use an Integer Linear Program (ILP). If only some of the variables are restricted to integer values, we use a Mixed Integer Linear Program (MILP).
\leftrightharpoons If we allow the variables b_{ij} to take on any value between 0 and 1, we call this an LTD-LP problem, etc.

Example LTD Algorithm

\Rightarrow A rounding algorithm would allow us to solve for the b_{ij} using an LP approach, then we can round the values close to 0 or close to 1 down to 0 or up to 1 respectfully.
\Rightarrow Algorithm
\Rightarrow Arrange b_{ij} obtained using an LTD-LP into decreasing order
\Rightarrow Set each $\mathrm{b}_{\mathrm{ij}}=1$ if the degree constraint (Δ) is not violated.
Set $\mathrm{b}_{\mathrm{ij}}=0$ otherwise.
\Rightarrow Stop when all the degree constraints are satisfied or there are no $b_{i j} \mathrm{~s}$ remaining
\Rightarrow LP algorithms are not a subject covered in this class.

Routing and Wavelength Assignment

\Rightarrow We now look in more detail at the tradeoff between equipment cost in the optical vs. the higher electronics layers.
\Rightarrow RWA Problem
\Rightarrow Given a network topology and a set of lightpath (end-toend) requests, determine a route and wavelength for each request using the minimum number of wavelengths (and/or some other wavelength related resource).
\Rightarrow Constraints
\Rightarrow Two lightpaths cannot share the same wavelength on the same link.
\leftrightharpoons Without wavelength conversion, a lightpath must be assigned the same wavelength on all the links along its path

Directed and Undirected Edges

\Rightarrow Define an undirected edge
\Rightarrow topology with a network that has a pair of unidirectional fiber links in opposite directions between nodes.
\Rightarrow all lightpaths are bi-directional with the same route and wavelength chosen for both directions.
\Rightarrow (a) is an example of an undirected edge and undirected lightpath.
\Rightarrow Note three wavelengths are needed without λ-conversion
$\Rightarrow(\mathrm{b})$ is an example of directed edges and directed lightpaths
\Rightarrow Only two wavelengths needed without λ-conversion
$\Rightarrow(\mathrm{c})$ and (d) are examples of undirected edges and directed lightpaths
\Rightarrow (c) requires a fiber in each direction and two wavelengths per fiber
\Rightarrow (d) requires bi-directional transmission over the same fiber, utilizing different wavelengths for each direction

(a)

(b)

(c)

(d)

Wavelength Conversion

\Rightarrow Wavelength conversion is the ability to translate data from one wavelenght to another without leaving the optical layer.
\Rightarrow Full wavelength conversion in an optical crossconnect allows any wavelength on any input to be changed to any wavelength on any output as shown below.

Optical Crossconnects (OXCs)

- Electronic switch core and/or DWDM with OEO interfaces
- Electronic signal regeneration at each input/output
- Bit-rate and format dependent
- Inherently non-blocking (OEO wavelength conversion)

OXC Scalability Issues

- OEO interfaces required on DWDM and switch side or on just switch side

-Increased power dissipation due to
-faster OEO
-faster switch fabric

Photonic Crossconnects (PXCs)

- Purely optical switch core, OEO on DWDM side only
- Bit-rate and format independent
- Optical loss can be compensated with optical amplification
- Non-blocking with OEO transponders or wavelength converters

PXC Scalability

- Port count and footprint are independent of line rate
- Optical amplification can be used to compensate for increased loss with increased size
-Power dissipation increases with increased bit-rate only on DWDM

> line-side
-Power dissipation of switch fabric independent of DWDM line rate

Wavelength Selective Crossconnects (WSXC)

- Scales to high port count using smaller NxN switches
- Partially blocking (cannot connect between $\lambda \mathrm{s}$)

Wavelength Switch/Router

Wavelength Interchanger

