

#### Lecture 12

ECE228C, Spring 2008, Prof. Blumenthal

Lecture 12.1

## **Conditional Dependence**

 $\Rightarrow$  What if we now remove the assumption that the probability of wavelength usage on each link is mutually independent.

 $\Rightarrow$  For a network with no wavelength conversion, we define any lightpath that has already been established and uses one of the *H* links that we want to use for a new lightpath, is an *interfering lightpath*.

 $\Rightarrow$  Place the constraint that an interfering lightpath that uses link *i* on one of the *H* links, will not use the next link *i*+1 with probability  $\pi_1$ .

 $\Rightarrow$  For any  $\lambda$ , we assume a new lightpath request that does not interfere on link *i*-1, will interfere on link *i* on the route with probability  $\pi_n$ .

 $\Rightarrow$  We have the following conditional probabilities:

Prob(λ used on link  $i | \lambda$  is not used on link i - 1) =  $\pi_n$ 

Prob( $\lambda$  used on link  $i | \lambda$  used on link i - 1) =  $(1 - \pi_i) + \pi_i \pi_n$ 

 $\Rightarrow$  And the probability of blocking with no wavelength conversion can be shown to be

$$P_{b,nc} = (1 - (1 - \pi_n)^H)^W$$

### **Conditional Dependance**

 $\Rightarrow$  If we now consider full wavelength conversion, the probability is linked to all wavelengths on any one link along H hops being blocked

$$P_{b,fc} = 1 - \prod_{i=1}^{H} \left( 1 - \frac{\pi_i^W - (1 - \pi_l + \pi_l \pi_n)^W \pi_i^W}{1 - \pi_{i-1}^W} \right)$$

⇒With

$$\pi_{i}^{W} = \frac{\pi_{n+}}{\pi_{n} + \pi_{l} - \pi_{l}\pi_{n}} \Big( 1 - (1 - (\pi_{l} + \pi_{n} - \pi_{l}\pi_{n}))^{i} \Big)$$

 $\Rightarrow$  Solving for  $\pi_{nc}$  and  $\pi_{fc}$  we can calculate the wavelength conversion gain

$$\frac{\pi_{fc}}{\pi_{nc}} \approx H^{1-\frac{1}{W}} \left(\pi_l + \pi_n - \pi_l \pi_n\right)$$

ECE228C, Spring 2008, Prof. Blumenthal

Lecture 12.3

## Interference Length

 $\Rightarrow$  We can now define the expected number of links that an interfering lightpath will use on the path chosen during a lightpath request.

$$L_i = \frac{1}{\pi_i}$$

 $\Rightarrow$  Assuming that H >> L<sub>i</sub> is saying that the number of hops in a lightpath request is much greater than the average number of hops it will share with another lightpath.

 $\Rightarrow$  This is a good assumption in highly connected networks (e.g. meshes)

⇒ Not a good assumption in low connected networks like rings ⇒ When  $\pi_l = 1$ , the conversion gain for non-conditional probability is approximately H<sup>1-1/W</sup> and it is lowered by a factor ( $\pi_n + \pi_l - \pi_n \pi_l$ ) when conditional probability is considered.

 $\Rightarrow$  This is called a *mixing probability factor*, so there is more conversion gain in networks where there is more mixing.

# Maximum Load Dimensioning Models

 $\Rightarrow$  It is useful to understand how using partial wavelength conversion can be used to affect the performance (rather than no-conversion or full-conversion).

 $\Rightarrow$  Two broad categories

 $\Rightarrow$  Off-line requests: Static network design where only a single set of lightpaths is supported.

 $\Rightarrow$  This set can be supported in a network with full wavelength conversion with at most L wavelengths per link. The maximum load of this set is L.

 $\Rightarrow$  If not full wavelength conversion, then more than L wavelengths needed per link to support the same lightpaths.

 $\Rightarrow$  The problem is then to determine how many additional wavelengths are needed to support a given load.

 $\Rightarrow$  On-line requests: Dynamic network assignment where one lightpath is setup at a time and requests are setup in real time without knowing what future requests are going to be.

 $\Rightarrow$  No more than L lightpaths use a link at any one time.

 $\Rightarrow$  Network with fully wavelength conversion that supplies L wavelengths on each link can support all lightpaths requests.