

#### Lecture 13

ECE228C, Spring 2008, Prof. Blumenthal

Lecture 13.1

# Hybrid Networks

- The fiber optic transmission medium offers an extremely high bandwidth pipe that can be merged with other non-optical physical layer technologies to realize cost and performance benefits.
- Optics may provide platforms to mix analog and digital modulation techniques
- $\Rightarrow$  This approach is often used in access networks
- $\Rightarrow$  We will briefly outline these applications
  - ⇒ We start by reviewing several mixed analog-digital transmission on a fiber based on subcarrier modulation
  - $\Rightarrow$  Then, we present some applications
    - ⇒ Antenna Remoting
    - $\Rightarrow$  Fiber to the X

## Fiber Analog Transmission

- $\Rightarrow$  So far, we have only discussed digital transmission on fibers
- Still, analog transmission is possible, and it is often used in short haul applications, like in access in the metro area
- $\Rightarrow$  The principle is the following



- $\Rightarrow$  In this scheme,  $I_{out}(t)$  is, to a first approximation, directly proportional to  $I_{in}(t)$
- ⇒ Thus, at least in principle, a high bandwidth linear link between transmitter and receiver is available

# Analog Transmission: Fiber vs. Cable

- ⇒ Fiber has a much higher bandwidth and smaller attenuation than any kind of electrical cable
- The disadvantages are mainly related to the optical link nonlinearities due to:
  - $\Rightarrow$  The fiber, if high power is launched at the input
  - The Laser (or LED) due to clipping effects or non-idealities in the PI transfer function
  - ⇒ The external modulator (when used) due to its intrinsic non linear ( $cos^2$ ) transfer function
- ⇒ In high performance analog application, a suitable pre-distortion circuit is required at the transmitter

# Standard (Electric) Analog Modulations

⇒ The typical (electrical) Amplitude Modulations (AM) are briefly reviewed in this slide



ECE228C, Spring 2008, Prof. Blumenthal

Lecture 13.5

# Optical Subcarrier Multiplexing



# Subcarrier Multiplexing and Dispersion

- ⇒ In the previous example, the signal has a bandwidth  $2\Delta f$  but it is replicated on both sides of the optical carrier, at a distance  $f_{RF}$
- ⇒ In terms of dispersion, the two sidebands see opposite phase shifts due to dispersion
  - ⇒ Thus, fiber dispersion effects are related to  $f_{RF}$ , and not to the actual much smaller information bandwidth  $\Delta f$
  - ⇒ Example: TV signal with a 5 MHz information bandwidth and 450 MHz carrier frequency. Dispersion is related to the 450x2= 900 MHz bandwidth
- ⇒ Single sideband optical modulation format have been proposed to highly reduce dispersion effects ( at the cost of a much higher complexity)



# Optical Subcarrier Multiplexing

- ⇒ When several AM modulated electrical channels are sent to the same laser, the resulting optical spectrum is as follows
- ⇒ This is a standard approach for multiplexing several channels (analog or digital) on the *same* optical carrier (single laser at a given wavelength)



# Hybrid Fiber/Coax Spectrum

- $\Rightarrow$  The information to be carried along the link has a quite complex spectrum
  - ⇒ Several relatively low bandwidth or bit rate signals are carried to the final user
  - $\Rightarrow$  Some signals may be analog, others digital
- Typical frequency Division Multiplexing FDM, similar to what it is used in radio links, is used



## Hybrid Fiber/Coax Networks



## Hybrid Fiber/Coax

Narrowcast + Broadcast Transmission over Fiber: Single Wavelength



Lecture 13.11



## Hybrid Fiber/Coax Architectures



#### Hybrid Fiber/Coax Performance Issues

#### → Return path problems

- → Noise returns from customer premises (Ingress Noise)
- → EMI from power transients (Impulse Noise)
- Nonlinear distortions
  - Transmitter (directly modulated laser clipping, laser relaxation oscillation, laser chirp, external modulator nonlinearity)
  - Optical Fiber (fiber nonlinearities, laser chirp combined with fiber dispersion, phase induced intensity noise)
  - Optical amplifier (gain nonlinearities, gain tilt)
  - Optical elements (polarization dependence, linearity)
- Performance measured for analog signals in terms of carrier-to-noise ratio (CNR) and spurious free dynamic range (SFDR).

# Return Path (Up-Link Transmission)

- ⇒ In all these architecture, the high bandwidth traffic flows from the central hub to the final users
- Anyway, in most application, a return path is required to set-up a bidirectional link, typically for
  - $\Rightarrow$  Standard voice application
  - $\Rightarrow$  IP transmission
- Several proposed architectures uses the same fiber bi-directional, to implement both down- and up-link traffic on the same fiber
  - ⇒ Usually, two different wavelengths are used in the two directions (1300 and 1550 nm)
  - ⇒ The bi-directional solution is efficient, but introduces several transmission issues

## Microwave/Photonic Interfaces



# Subcarrier Multiplexing



# **Optical Subcarrier Multiplexing**

#### **Direct Modulation**



ECE228C, Spring 2008, Prof. Blumenthal

# Digital OSCM Receivers



#### High Bandwidth Mixed Signal Transmitter



ECE228C, Spring 2008, Prof. Blumenthal

Lecture 13.20

### Fiber Wireless Networks



#### Access Networks

Access networks represent the last mile in getting bandwidth to the end user (home, office, etc.) These networks must form a bridge between the high capacity optical networks of the future and the low cost access.



## Access Network Types



Adapted from R. Ramaswami, Optical Networks, Morgan Kaufmann.

## Example PON

#### LARNET WRPON



M. Zirnigibl et. Al., LARnet, a local access router network, IE PTL, Vol..7, p. 1041, Feb. 1995.

## Cable TV Distribution Networks

Hybrid Fiber Coax: Through Subcarrier Modulated Fiber Coax Bus (SMFCB)







### **GPON** Transceiver Standards

ECE228C, Spring 2008, Prof. Blumenthal

## Downstream/Upstream Rates

- ⇒ 1244.16 Mbps/155.52 Mbps
- ⇒ 1244.16 Mbps/622.08 Mbps
- ⇒ 1244.16 Mbps/1244.16 Mbps
- ⇒ 2488.32 Mbps/155.52 Mbps
- ⇒ 2488.32 Mbps/622.08 Mbps
- ⇒ 2488.32 Mbps/1244.16 Mbps
- ⇒ 2488.32 Mbps/ 2488.32 Mbps

# Operating Wavelength

- ⇒ Downstream
  - ⇒ Single Fiber: 1480 1500nm
  - ⇒ Dual Fiber: 1260 1360nm
- ⇒ Upstream
  - ⇒ 1260 1360nm

#### **Physical Medium Dependent Parameters**

#### ⇒ Attenuation Range

- ⇒ Class A: 5 20dB
- ⇒ Class B: 10 25dB
- ⇒ Class C: 15 30dB
- ⇒ Differential Optical Path Loss: 15 dB
- ⇒ Max Optical Path Penalty: 1 dB
- ⇒ Max differential logical reach: 20 km
- ⇒ Max fiber distance between S/R and R/S points: 20 km
- ⇒ Bi-directional transmission: 1 fiber WDM or 2 fiber

#### Single Fiber OLT Transmitter 1244 Mbps Downstream

- ⇒ Operating wavelength: 1480 1500 (SF)
- ⇒Line Code: Scrambled NRZ
- $\Rightarrow$  Mean Launch Power (dBm)
  - $\Rightarrow$ Class A: -4 min, +1 max
  - ⇒Class B: +1 min, +6 max
  - $\Rightarrow$ Class C: +5 min, +9 max
- $\Rightarrow$  Extinction Ratio: > 10 dB
- ⇒ Tolerance to transmitter incident light power: > -15 dB
- $\Rightarrow$  SLM laser linewidth: 1 nm max @ -20 dB
- ⇒SLM laser SMSR: 30 dB min

#### Single Fiber ONU Receiver 1244 Mbps Downstream

- ⇒ Minimum reflectance: <20 dB @ Rx wavelength
- $\Rightarrow$  BER: < 10<sup>-10</sup>
- ⇒ Minimum Sensitivity/Minimum Overload (dBm)
  - ⇒ Class A: -25/-4
  - ⇒ Class B: -25/-4
  - ⇒ Class C: -26/-4
- ⇒ Consecutive identical gain immunity: > 72 bit
- ⇒ Jitter tolerance
- $\Rightarrow$  Tolerance to reflected optical power: < 10 dB

#### Single Fiber OLT Transmitter 2488 Mbps Downstream

- ⇒ Operating wavelength: 1480 1500 (SF)
- ⇒Line Code: Scrambled NRZ
- $\Rightarrow$  Mean Launch Power (dBm)
  - $\Rightarrow$ Class A: 0 min, +4 max
  - ⇒Class B: +5 min, +9 max
  - $\Rightarrow$ Class C: +3 min, +7 max
- $\Rightarrow$  Extinction Ratio: > 10 dB
- ⇒ Tolerance to transmitter incident light power: > -15 dB
- $\Rightarrow$  SLM laser linewidth: 1 nm max @ -20 dB
- ⇒SLM laser SMSR: 30 dB min

#### Single Fiber ONU Receiver 2488 Mbps Downstream

- ⇒ Minimum reflectance: <20 dB @ Rx wavelength
- $\Rightarrow$  BER: < 10<sup>-10</sup>
- ⇒ Minimum Sensitivity/Minimum Overload (dBm)
  - ⇒ Class A: -21/-1
  - ⇒ Class B: -21/-1
  - ⇒ Class C: -28/-8
- ⇒ Consecutive identical gain immunity: > 72 bit
- ⇒ Jitter tolerance
- ⇒ Tolerance to reflected optical power: < 10 dB

## Single Fiber ONU Transmitter 155 Mbps Upstream

- ⇒ Operating wavelength: 1260 1360 (SF)
- $\Rightarrow$  Line Code: Scrambled NRZ
- ⇒ Maximum reflectance: <-6 dB @ Tx wavelength
- $\Rightarrow$  Mean Launch Power (dBm)
  - $\Rightarrow$  Class A: -6 min, 0 max
  - $\Rightarrow$  Class B: -4 min, +2 max
  - $\Rightarrow$  Class C: -2 min, +4 max
- ⇒ Launched power without input: Min Sens 10 dBm
- ⇒ Max Tx enable/disable: 2/2 bits
- $\Rightarrow$  Extinction Ratio: > 10 dB
- $\Rightarrow$  Tolerance to transmitter incident light power: > -15 dB
- ⇒ SLM laser linewidth: 1 nm max @ -20 dB
- ⇒ SLM laser SMSR: 30 dB min
- ⇒ Jitter transfer
- ⇒ Jitter generation: 0.2 p-p from 0.5kHz to 1.3MHz

#### Single Fiber OLT Receiver 155 Mbps Upstream

- ⇒ Minimum reflectance: <20 dB @ Rx wavelength
- $\Rightarrow$  BER: < 10<sup>-10</sup>
- ⇒ Minimum Sensitivity/Minimum Overload (dBm)
  - ⇒ Class A: -27/-5
  - ⇒ Class B: -30/-8
  - ⇒ Class C: -33/-11
- ⇒ Consecutive identical gain immunity: > 72 bit
- ⇒ Jitter tolerance: NA
- $\Rightarrow$  Tolerance to reflected optical power: < 10 dB

## Single Fiber ONU Transmitter 622 Mbps Upstream

- ⇒ Operating wavelength: 1260 1360
- ⇒ Line Code: Scrambled NRZ
- ⇒ Maximum reflectance: <-6 dB @ Tx wavelength
- $\Rightarrow$  Mean Launch Power (dBm)
  - $\Rightarrow$  Class A: -6 min, -1 max
  - $\Rightarrow$  Class B: -1 min, +4 max
  - $\Rightarrow$  Class C: -1 min, +4 max
- ⇒ Launched power without input: Min Sens 10 dBm
- ⇒ Max Tx enable/disable: 8/8 bits
- $\Rightarrow$  Extinction Ratio: > 10 dB
- $\Rightarrow$  Tolerance to transmitter incident light power: > -15 dB
- $\Rightarrow$  SLM laser linewidth: 1 nm max @ -20 dB
- ⇒ SLM laser SMSR: 30 dB min
- ⇒ Jitter transfer
- ⇒ Jitter generation: 0.2 p-p from 0.5kHz to 1.3MHz

#### Single Fiber OLT Receiver 622 Mbps Upstream

- ⇒ Minimum reflectance: <20 dB @ Rx wavelength
- $\Rightarrow$  BER: < 10<sup>-10</sup>
- ⇒ Minimum Sensitivity/Minimum Overload (dBm)
  - ⇒ Class A: -27/-6
  - ⇒ Class B: -27/-6
  - ⇒ Class C: -32/-11
- ⇒ Consecutive identical gain immunity: > 72 bit
- ⇒ Jitter tolerance: NA
- $\Rightarrow$  Tolerance to reflected optical power: < 10 dB

### Single Fiber ONU Transmitter 1244 Mbps Upstream

- $\Rightarrow$  Operating wavelength: 1260 1360
- ⇒ Line Code: Scrambled NRZ
- ⇒ Maximum reflectance: <-6 dB @ Tx wavelength
- ⇒ Mean Launch Power min/max(dBm)
  - $\Rightarrow$  Class A: -3/+2; Power Leveling: -2/+3
  - $\Rightarrow$  Class B: -2/+3; Power Leveling: -2/+3
  - $\Rightarrow$  Class C: +2/+7; Power Leveling: +2/+7
- ⇒ Launched power without input: Min Sens 10 dBm
- ⇒ Max Tx enable/disable: 16/16 bits
- $\Rightarrow$  Extinction Ratio: > 10 dB
- $\Rightarrow$  Tolerance to transmitter incident light power: > -15 dB
- $\Rightarrow$  SLM laser linewidth: 1 nm max @ -20 dB
- ⇒ SLM laser SMSR: 30 dB min
- ⇒ Jitter transfer
- ⇒ Jitter generation: 0.33 p-p from 4.0kHz to 10.0MHz

#### Single Fiber OLT Receiver 1244 Mbps Upstream

- ⇒ Minimum reflectance: <20 dB @ Rx wavelength
- $\Rightarrow$  BER: < 10<sup>-10</sup>
- ⇒ Minimum Sensitivity/Minimum Overload (dBm)
  - ⇒ Class A: -24/-3; Power Leveling: -23/-8
  - ⇒ Class B: -28/-7; Power Leveling: -28/-13
  - ⇒ Class C: -29/-8; Power Leveling: -29/-14
- ⇒ Consecutive identical gain immunity: > 72 bit
- ⇒ Jitter tolerance: NA
- ⇒ Tolerance to reflected optical power: < 10 dB

### Single Fiber ONU Transmitter 2488 Mbps Upstream

- $\Rightarrow$  Operating wavelength: 1260 1360
- ⇒ Line Code: Scrambled NRZ
- ⇒ Maximum reflectance: <-6 dB @ Tx wavelength
- ⇒ Mean Launch Power min/max(dBm)
  - ⇒ Class A: -?/+?; Power Leveling: -?/+?
  - $\Rightarrow$  Class B: -?/+?; Power Leveling: -?/+?
  - $\Rightarrow$  Class C: +?/+?; Power Leveling: +?/+?
- ⇒ Launched power without input: Min Sens ? dBm
- ⇒ Max Tx enable/disable: ??/?? bits
- $\Rightarrow$  Extinction Ratio: > ? dB
- $\Rightarrow$  Tolerance to transmitter incident light power: > -? dB
- $\Rightarrow$  SLM laser linewidth: ? nm max @ -20 dB
- ⇒ SLM laser SMSR: ? dB min
- ⇒ Jitter transfer
- ⇒ Jitter generation: ? p-p from ? kHz to ? MHz

#### Single Fiber OLT Receiver 2488 Mbps Upstream

- ⇒ Minimum reflectance: <? dB @ Rx wavelength
- $\Rightarrow$  BER: < ?
- ⇒ Minimum Sensitivity/Minimum Overload (dBm)
  - ⇒ Class A: ?/?; Power Leveling: ?/?
  - ⇒ Class B: ?/?; Power Leveling: ?/?
  - ⇒ Class C: ?/?; Power Leveling: ?/?
- ⇒ Consecutive identical gain immunity: > ? bit
- ⇒ Jitter tolerance: NA
- ⇒ Tolerance to reflected optical power: < ? dB