
Lecture 2: First Generation Optic Networks

First Generation Optical Networks

- ⇒ Fiber as transmission medium
 - ⇒ The term "optical" refers to point-to-point transmission
- ⇒ Switching and routing handled electronically
- ⇒ Examples:
 - ⇒ SONET/SDH
 - ⇒ FDDI
 - ⇒ Fiber Channel
 - ⇒ ESCON, HIPPI
 - ⇒ Gigabit Ethernet
 - ⇒ Hybrid solution: coexistence on the same architecture of
 - ⇒ Fiber and coaxial
 - ⇒ Digital and analog formats

First Generation Optical Networks

SONET/SDH

- ⇒ SONET: Synchronous Optical Network
 - ⇒ Current transmission and multiplexing standard for North American carrier infrastructure.
- ⇒ SDH: Synchronous Digital Hierarchy
 - ⇒ Current transmission and multiplexing standard for Europe and Japan
- ⇒ SONET and SDH first standardization dates back to the late 80s
- ⇒ At that time, network carrier operators recognized that:
 - ⇒ The previous PDH (Plesiocronous Digital Hierarchy) was not scalable enough for the expected traffic growth
 - ⇒ Optical fiber transmission was getting a good level of reliability, and at that time started to show its huge potential
 - The available optical transmission systems were being developed in a totally proprietary manner, so that optical systems from different vendors could not interoperate
- ⇒ Due to its pervasive use in transport networks, we will analyze SONET/SDH in detail

What is SONET/SDH

- ⇒ It is a set of ITU-T Recommendations (first editions date back to 1989) that cover:
 - ⇒ The definition of a very structured multiplexing hierarchy
 - ⇒ The definition of network management and protection techniques
 - ⇒ The definition of interfaces to the physical medium (fiber and optical components) to be used for transmission
 - ⇒ The definition of interfaces with other protocols that can work over SONET/SDH
- ⇒ Some of the most important targets of the standard are:
 - Network Reliability, compatible with national and international carrier requirements (99.999% availability)
 - ⇒ Interoperability between different vendors
 - ⇒ Format to accommodate different network architectures and upgrades
 - ⇒ Extensive monitoring of performance and traffic

SONET/SDH

- ⇒ The multiplexing hierarchy is the only fundamental difference between SONET and SDH
- ⇒ SDH first level (STM-1) is 155 Mbit/s, while SONET first level (OC-1) is 51.8 Mbit/s

SONET	SDH	Optical Carrier	Line Rate (Mbps)	Capacity in DS1s
STS-1		OC-1	51.840	28
STS-3	STM-1	OC-3	155.520	84
STS-12	STM-4	OC-12	622.080	336
STS-48	STM-16	OC-48	2488.320	1344
STS-192	STM-64	OC-192	9953.280	5376
STS-768	STM-256	OC-768	39813.120	21504

Legacy Non-Synchronous Hierarchy definitions:

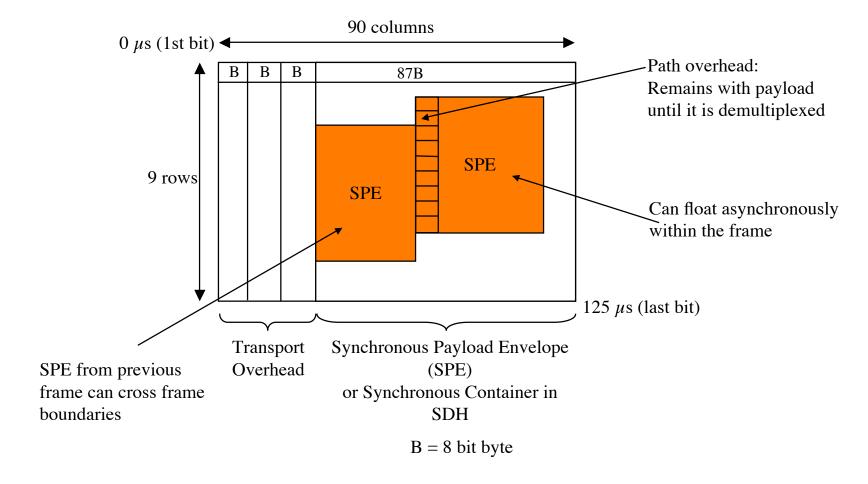
DSO = 64 kb/s (phone call) DS1 = 1.544 Mb/s = 24 DS0s

SONET OC-*n* is thus a transmission at a bit rate equal to *n* times 51.84 Mbit/s

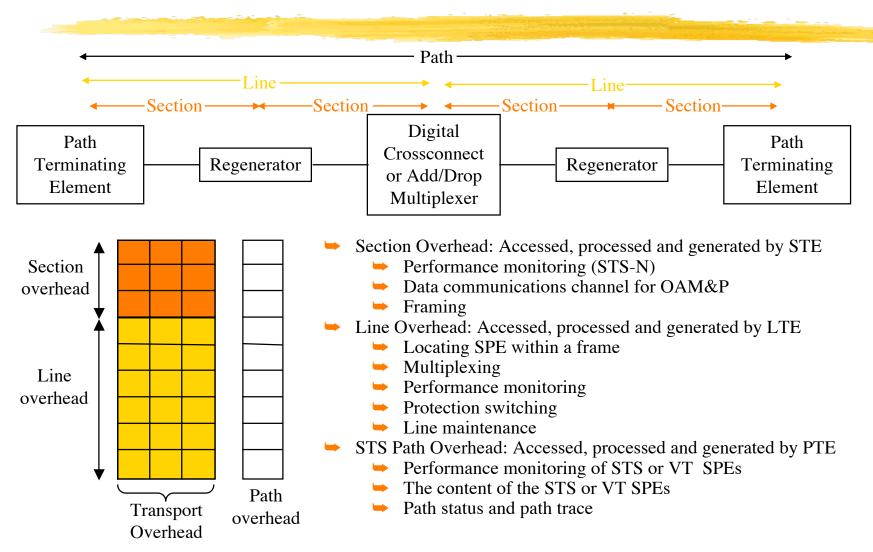
U.S. Long Haul SONET Deployment

	1000 5	1.00	4000 B	
Service	1998 Deployment	March/99	1999 Deployment	Transport
Provider		Channels Lit		Strategy
GTE	16 x OC192 Nortel		32 x OC192 Nortel	4F BLSR Rings
Qwest	16 x OC192 Nortel		32 x OC192 Nortel	4F BLSR Rings
IXC	16 x OC192 Nortel		32 x OC192 Nortel	4F BLSR Rings
			OC48/192 Transponder	Linear Express
			ALA/Ciena	Routes
Williams	16 x OC192 Nortel		32 x OC192 Nortel	Linear Spurs
			OC48 Sycamore SONET Switch	Mesh Core
MCI	8 x OC192 Nortel		16 x OC192 Nortel	BLSR Rings
Worldcom	16 x OC192 Nortel		32 x OC192 Nortel	BLSR Rings
			40 x OC48 Ciena	
Frontier	16 x OC48 NEC	10/16	16 x OC48 NEC	4F BLSR Rings
			32 x OC48/192 Pirelli	
			OC192 SONET Hitachi	
Sprint	16 x OC48 Ciena	10/16	40 x OC48 Ciena	2F/4F BLSR
	OC48 BLSR NEC	20/40		Rings
AT&T	8 x OC48 Lucent		40 x OC48 Lucent	4F BLSR Rings
			OC192 NEC	
Level 3	Lease OC12			
	fromFrontier			
Enron	Ciena 4000	2/96	Ciena 4000	Linear

Source: BancBoston Robertson Stephens www page


SONET/SDH Framing

- ⇒ SONET/SDH transmits continuous streams of bit, at a given bit rate
- → Multiplexing is obtained by a complex time division multiplexing (TDM) scheme
 - ⇒ Though complex, the multiplexing architecture was developed having in mind a potentially efficient implementation in VLSI electronic circuits
- ⇒ A frame is an organized sequence of bits
 - ⇒ For a given multiplexing layer, each input tributary stream of bits is mapped into a Synchronous Payload Envelope (SPE)
 - ⇒ A set of bits, called Path Overhead is added to the SPE, for control, monitor, etc.
 - ⇒ SPE+its Path Overhead form a Virtual Tributary (VT)
- ⇒ SDH uses a different terminology, but the principles are identical
 - ⇒ We use in the following the SONET definitions


SONET/SDH layering

- ⇒ Path layer (similar to OSI Layer 3 Network)
 - ⇒ Responsible for End-to-end connections
 - ⇒ Monitor and tracking the status of the connection
- ⇒ Line Layer
 - ⇒ Multiplexing of several path-layer connections between two nodes
 - ⇒ Protection and restoration
- ⇒ Section Layer
 - ⇒ Defines the operation of regenerators, and between regenerators, along the link
 - ⇒ Together, SONET Line and Section layers corresponds to OSI Layer 2 Data Link
- ⇒ Physical layer (identical to OSI Layer 1)
 - ⇒ Defines the actual transmission of bits across fibers

STS-1 Frame Format and Structure

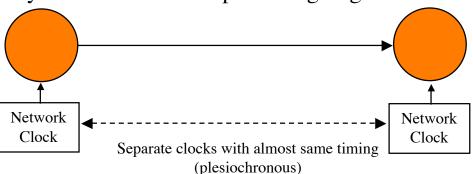
SONET Overheads

SONET Overheads

Section Overhead:

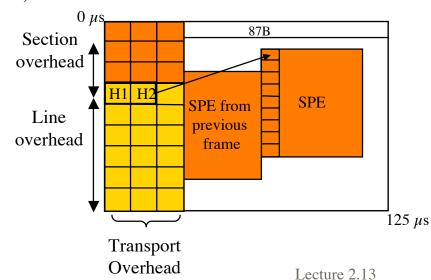
- ⇒ Accessed, processed and generated by Section Terminal Equipments (STE)
- ⇒ Performance monitoring on the frame
- ⇒ Data communications channel for operation, administration and maintenance (OAM)
- ⇒ Framing

⇒ Line Overhead:

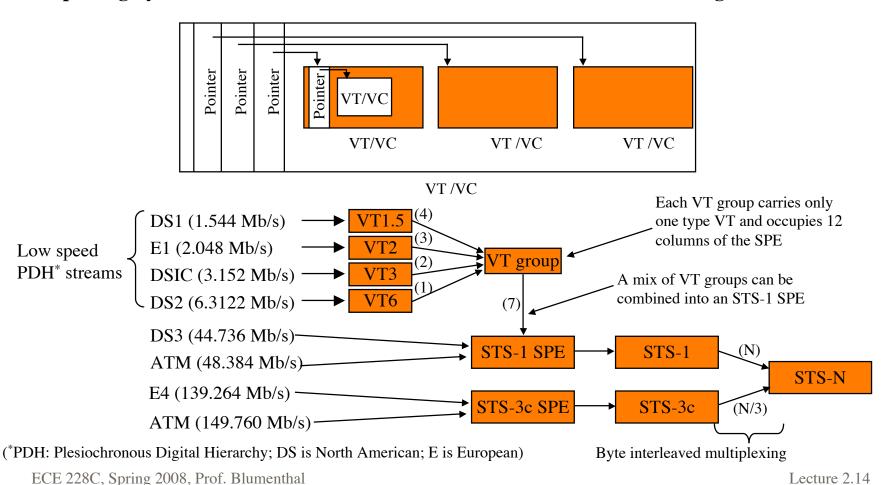

- ⇒ Accessed, processed and generated by Line Terminal Equipment (LTE)
- ⇒ Locating VT within a frame
- ⇒ Multiplexing/routing
- Performance monitoring
- ⇒ Protection switching
- ⇒ Line maintenance

⇒ STS Path Overhead:

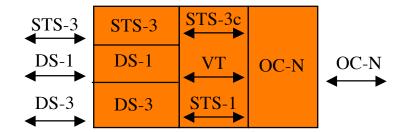
- ⇒ Accessed, processed and generated by Path terminal Equipment (PTE)
- ⇒ End-to-end performance monitoring of VT SPEs
- ⇒ Path status and path trace


SONET Pointers

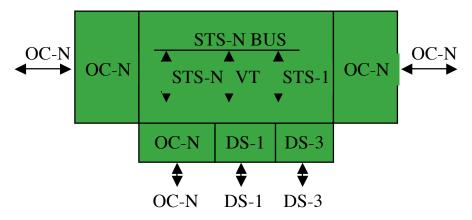
- Pointers are used to compensate for frequency and phase variations
- → Pointers allow dynamic and flexible phase aligning of STS and VT payloads


Bit Stuffing for Synchronization

- → When the frame rate of the SPE is too slow relative to STS-
 - → An extra byte is stuffed for a "one-byte" delay
- → When the frame rate of the SPE is too fast relative to STS-1
 - → An extra byte is removed and place in the overhead capacity

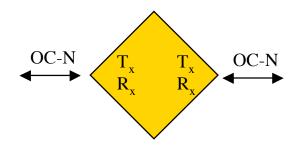

Virtual Tributary (VT)/Virtual Container (VC)

Multiplexing by VT/VCs makes it easier to extract low bit rate data from a high bit rate channel

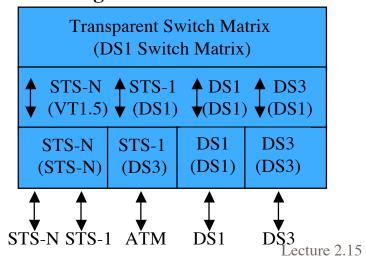


SONET Network Elements

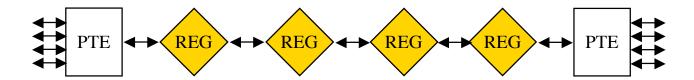
Terminal Multiplexer

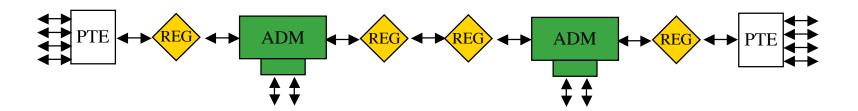


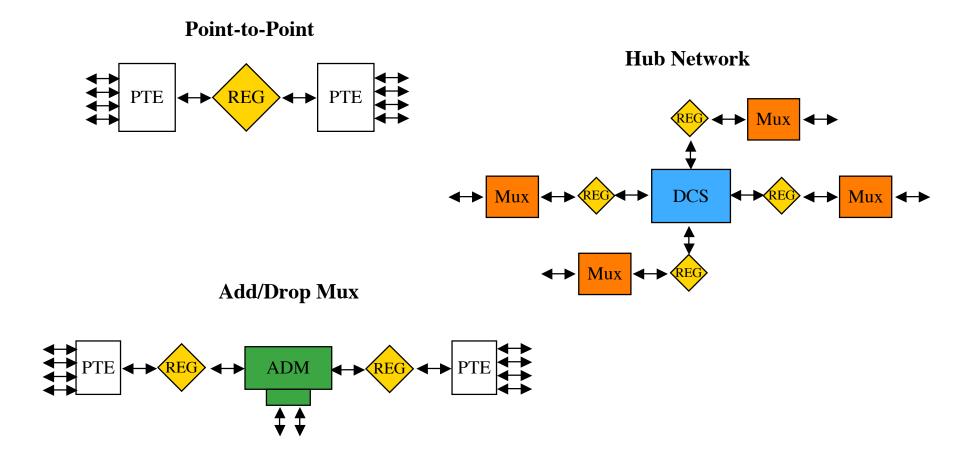
Add/Drop Multiplexer



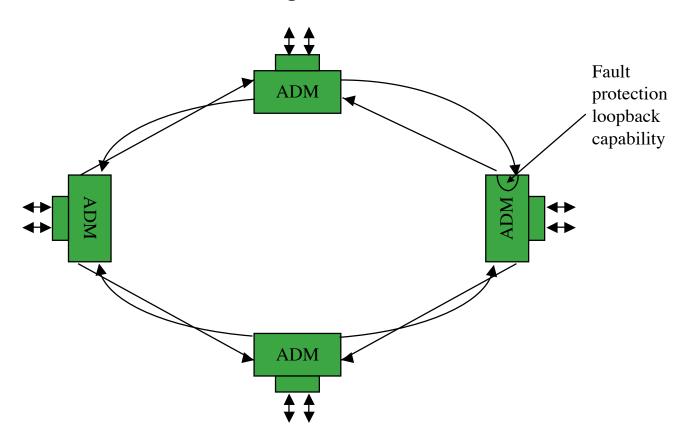
ECE 228C, Spring 2008, Prof. Blumenthal


Regenerator


Broadband and (Wideband) Digital Cross-Connects



- ⇒ Point-to-Point configuration
 - ⇒ It is the simplest SONET network configuration
 - ⇒ The point-to-point link starts and ends in the Path Terminal Equipments, which perform mud-demultiplexing of the input tributaries
 - ⇒ No routing or demultiplexing is done along system
 - ⇒ Regenerators are used to restore the signal



- ⇒ Point-to-Multipoint configuration (add-drop)
 - ⇒ It is still a linear topology
 - ⇒ ADM (and regenerators) are placed along the network
 - ⇒ The ADM element adds and drops tributary channels along the link
 - ⇒ SONET ADM are specifically designed for this task, and have a significantly simpler structure than general SONET cross-connects

SONET Ring Architecture

SONET Physical Layer

- ⇒ The SONET physical layer is totally based on optical fiber transmission
- ⇒ The most important ITU Recommendations are:
 - ⇒ ITU-T G.957: Optical interfaces for equipments and systems relating to the synchronous digital hierarchy
 - ⇒ Single span, single channel link without optical amplifiers
 - ⇒ ITU-T G.691: Optical interfaces for single-channel STM-64, STM-256 and other SDH systems with optical amplifiers
 - ⇒ Single channel, single or multi span, optically amplified links at 622 Mbit/s, 2.5 Gbit/s, 10 Gbit/s
 - ⇒ ITU-T G.692: Optical interfaces for multichannel systems with optical amplifiers
 - ⇒ Multi channel, single or multi span, optically amplified
 - ⇒ Definition of the ITU frequency grid
- The Recommendations cover several type of links, ranging from very short-haul interoffice links to ultra-long haul, WDM backbone links
 - ⇒ Transmitter, receiver and link physical parameters are specified

SONET Physical Interface

- ⇒ An extract from ITU G.691 for SONET OC-192 (or SDH STM-64) (10 Gbit/s)
 - ⇒ Standard for inter-office terrestrial systems
- ⇒ The systems are classified as follows

Type - level . Suffix (like in V-64.2)

- ⇒ where:
- ⇒ Type indicate the system length:
 - ⇒ S- short-haul (up to 20-40 Km)
 - ⇒ L- long-haul (up to 40-80 Km)
 - ⇒ V- very long-haul (up to 80-120 Km)
 - ⇒ U- ultra long-haul (up to 120-160 Km)
- ⇒ Level indicate the bit rate, according to the SHH STM notation (for example V-64 is a very long haul system at 10 Gbit/s)

SONET Physical Interface

- .level indicates the fiber and wavelength used
 - ⇒ .1 1300 nm sources, on standard fiber (ITU G.652)
 - \Rightarrow .2 1550 nm sources, on standard fiber
 - ⇒ .3 1550 nm sources, on dispersion shifted fiber (ITU G.653)
 - ⇒ .5 1550 nm sources, on non-zero dispersion shifted fiber (ITU G.655)
- ⇒ In conclusions, V-64.3 is a
 - ⇒ very long haul system
 - ⇒ at 10 Gbit/s
 - ⇒ On dispersion shifted fibers

Example of the Standard for V-64.3

⇒ Transmitter parameters

- ⇒ Operating wavelength range: 1530-1565
- ⇒ Mean launched power: 10-13 dBm
- ⇒ Minimum transmitter extinction ratio: 8.2 dB

⇒ Path Parameters

- ⇒ Attenuation range: 22-33 dB (allowing a single span of 100-120 km)
- ⇒ Maximum accumulated dispersion: 400 ps/nm
- ⇒ Maximum accumulated PMD: 10 ps

⇒ Receiver Parameters

- ⇒ Receiver sensitivity: -24 dBm
- ⇒ Receiver overload: -9 dBm
- ⇒ Maximum path-penalty: 1 dB

SONET SMF Optical Interface

- Must support RZ or NRZ
- ➤ Repeater spans of less than 25km and between 25 and 40km have been specified
- ► Repeater spans greater than 40km require specialized specifications

NRZ

 $0.95T \le Rise Time + On Time \le 1.05T$

$$f_0 > \frac{2}{T}$$
, OC-1 to OC-48

\mathbf{RZ}

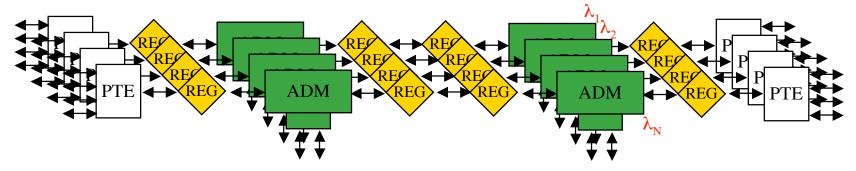
Rise Time + On Time + Fall Time $\leq (2/3)T$

$$f_0 > \frac{2}{T}$$
, OC-1 to OC-18

$$f_0 > \frac{3}{T}$$
, OC-24 to OC-48

Rise time
$$\leq \frac{T}{3}$$
, OC-1 to OC-48

Fall time
$$\leq \begin{cases} T/3, \text{ OC-1 to OC-18} \\ T/2, \text{ OC-24 to OC-48} \end{cases}$$

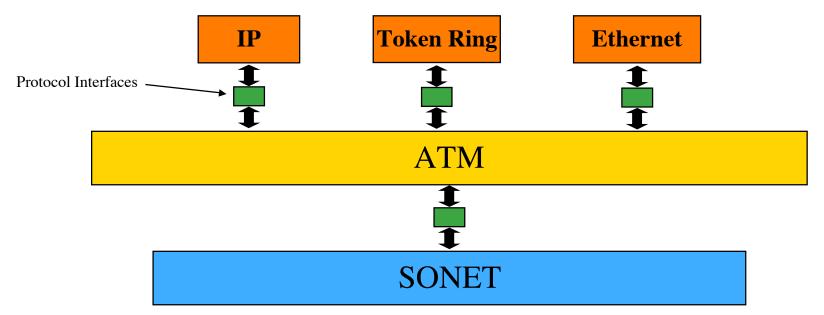

SONET & WDM

- ⇒ The standard SONET approach to WDM is to simply use wavelengths as totally separated channels
- ⇒ Basically, with this approach, a fiber carrying *N* wavelengths is totally equivalent to *N* single channel fibers

Physical Topology

Logical Topology: N linear ADM SONET links in parallel

SONET & WDM

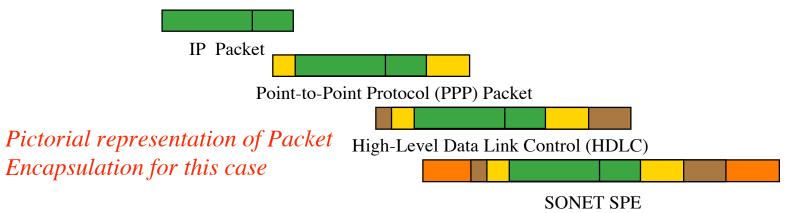

- ⇒ An Add-Drop node receiving 40-80 channels at 10 Gbit/s has to handle in the electronic domain a throughput approaching the Terabit/s
- ⇒ The situation is even more complex for a hub digital cross-connect
- ⇒ The resulting SONET equipments are
 - ⇒ Expensive
 - ⇒ Have power dissipation problems
 - ⇒ Have significant dimension
- ⇒ Note that in both ADM and DCS, most of the traffic is just passing through the node, and would not need to be decoded
- ⇒ Second Generation optical networks remove this complexity, by trying to keep the signal in the optical domain

IP and ATM over SONET

- ⇒ Internet Service Providers (ISP) typically use ATM to build their Internet backbone networks
 - ⇒ ATM links at 155 Mbit/s or 622 Mbit/s are typically used to connect IP backbone routers
- ⇒ ATM links are then typically implemented over SONET
- ⇒ IP over ATM over SONET (over WDM) is thus today current approach
- ⇒ There are several proposal to build a simpler architecture, such as:
 - ⇒ IP over SONET over WDM
 - ⇒ IP "directly" over WDM (with some framing simpler than SONET)
- ⇒ This approaches are often called "Optical IP", even though this may generate some misunderstandings

Classical IP over ATM

- ⇒ The classical approach, defined in IETF, RFC 1577, use ATM for data transport
- ⇒ Besides IP, other protocols are mapped into ATM
 - ⇒ LAN emulation: allows to send standard LAN (Ethernet 802.3 or Token Ring/805.%) traffic over WAN
- ⇒ ATM uses SONET for data transport



MPLS

- ⇒ Intermediate nodes along the network are very complex
- ⇒ Each node, on each IP packet to be forwarded to a following node, has to implement all the functions of the three protocols
- ⇒ Some proposal, such as Multi Protocols Label Switching (MPLS), are focused on greatly simplifying the packet forwarding process
 - ⇒ Short "Labels" are attached to packets
 - ⇒ Forwarding is obtained by swapping labels according to fixed look-up tables
 - ⇒ The IP router becomes more similar to a switch
- → MPLS is gaining more and more interest as an efficient IP Traffic engineering protocol
 - As we will see later, it has an interesting counterpart in second generation optical networks, in the Multi Protocol Lambda Switching (MP λ S)

IP over SONET

- ⇒ Another approach is based on directly mapping IP over SONET through the Point-to-Point Protocol (PPP), standardized by the IETF in RFC 1661
- ⇒ PPP is a protocol that can adapt IP over different other data transport (not only SONET). Functions:
 - ⇒ Encapsulation and multiplexing from multiple network layer protocols over the same link
 - ⇒ Establishment, configuration and test the link layer connection

Homework #1, Due April 24th

- ⇒ Problem 6.1 Ramaswami
- ⇒ Problem 6.3 Ramaswami
- ⇒ Problem 6.4 Ramaswami
- ⇒ Problem 7.1 Ramaswami
- ⇒ Problem 7.2 Ramaswami
- ⇒ Problem 7.4 Ramaswami
- ⇒ Problem 7.5 Ramaswami