Lecture 3: First Generation Optic Networks and WDM Network Elements

IP+SONET vs. IP+ATM+SONET

\Rightarrow Bandwidth efficiency due to different protocol overheads
\Rightarrow Under the assumption of
$\Rightarrow 576$ byte IP packet
$\Rightarrow 155 \mathrm{Mbit} / \mathrm{s}$ SONET rate
\Rightarrow the useful bandwidth is
$\Rightarrow 125.918 \mathrm{Mbit} / \mathrm{s}$ for IP+ATM+SONET (80\% efficiency)
$\Rightarrow 147.150 \mathrm{Mbit} / \mathrm{s}$ for IP+SONET (95% efficiency)
\Rightarrow Bandwidth management and Quality of Service (QoS)
\Rightarrow The use of ATM ensure a rich set of QoS parameters, that are not present in the PPP used for IP directly over SONET
\Rightarrow Addressing, Routing, Flow Control, Fault Tolerance
\Rightarrow Again, most of these features are present in ATM, while they are not in PPP
\Rightarrow In conclusion, IP+SONET is to be preferred where the raw bandwidth is an issue, while IP+ATM+SONET is much more robust in terms of several others networking features
\Rightarrow Equipment cost may anyway override these considerations

Fiber Distributed Digital Interface (FDDI)

\Rightarrow Standard for Local Area Networks (LANs) and Metropolitan Area Networks (MANs)
\Leftrightarrow Extension of Token Ring to 100 Mbps optical fiber
\Rightarrow Connect up to 500 nodes
\Leftrightarrow Low cost implementation uses low power transmitters and graded index MMF

FDDI Frame Format

\Rightarrow PA: Preamble field: 16 symbols each coded with 45 bits to establish and maintain clock and synchronization
\Rightarrow SD: Starting delimiter field. Two unique symbol sequences to start processor on overhead sequence.
\Leftrightarrow FC: Frame control consisting of two symbols that define frame type and characteristics.
\Rightarrow DA: Destination address
\Rightarrow SA: Source address
\Rightarrow FCS: Frame checking sequence for error detection
\Rightarrow ED: End delimiter field.
\Leftrightarrow FS: Frame status field.

FDDI Flow Control

\Leftrightarrow Each node checks for the presence of tokens
\Rightarrow If a token is available, then the node may send data according to:
\Rightarrow Synchronous: Time sensitive traffic with required upper bound on transmission delay
\Rightarrow Transmission of data once a token has been received is for preassigned amount of time
\Rightarrow Asynchronous: Time insensitive without guarantee of transmission delay
\Rightarrow Transmission data may begin after a timer se to the token rotation time (TRT)
\Leftrightarrow Transmission may last for a predetermined token holding time (THT)
\Rightarrow After transmission, the node replaces the token on the network.

Fibre Channel

\Rightarrow A technology for transmitting data between computer devices at a data rate of up to 1 Gbps (A data rate of 4 Gbps is proposed.)
\Rightarrow Suited for connecting computer servers to shared storage devices and for interconnecting storage controllers and drives.
\Rightarrow Fibre Channel Arbitrated Loop (FC-AL) supports copper media and loops containing up to 126 devices, or nodes.
\Rightarrow Three times as fast as the Small System Computer Interface (SCSI)
\Rightarrow Devices can be as far as ten kilometers (about six miles) apart. Requires optical fiber for longer distances. Works with coaxial cable and twisted pair for shorter distances.
\Rightarrow Offers point-to-point, switched, and loop interfaces. Interoperates with SCSI, the Internet Protocol (IP), and other protocols.
\Rightarrow Specified by ANSI X3.230-1994 (ISO 14165-

1) ECE 228 C , Spring 2006, Prof. Blumenthal

Fibre Channel

High-speed serial data transfer interface that can be used to connect systems and storage in point-to-point or switched topologies.
\Rightarrow Supports bandwidths of $133 \mathrm{Mb} /$ sec., $266 \mathrm{Mb} /$ sec., $532 \mathrm{Mb} / \mathrm{sec} ., 1.0625 \mathrm{~Gb} /$ sec., and $4 \mathrm{~Gb} / \mathrm{sec}$. (proposed) at distances of up to ten kilometers.
\Rightarrow The FC layered protocol architecture consists of five layers. The highest layer defines mappings from other communication protocols onto the FC fabric. Protocols supported include:
\Rightarrow Small Computer System Interface (SCSI)
\Rightarrow Internet Protocol (IP)
\Rightarrow ATM Adaptation Layer (AAL5)
\Rightarrow Link Encapsulation (FC-LE)
\Rightarrow IEEE 802.2
\triangle FC-0: Covers the physical characteristics of the interface and media, including the cables, connectors, drivers, transmitters, and receivers
\Rightarrow FC-1: Defines the 8B/10B encoding/decoding and transmission protocol used to integrate the data with the clock information required by serial transmission techniques
\Rightarrow FC-2: Defines the rules for the signaling protocol and describes transfer of the data frame, sequence, and exchanges

Source: http://www.fibrechannel.com/technology

Fibre Channel

```
Frame size is up to 2,148 bytes:
    Bytes Function
4 Start of frame delimiter
24 Frame header, including 24-bit source and destination addresses and
    sequence numbers to support windowing and flow control
0 to 2,112 Higher-layer data (payload), may include a 64-byte optional header,
    reducing payload to 2,048 bytes
4 CRC
End of frame delimiter
```


8B/10B Channel Coding

\Rightarrow Eight data bits are sent in 10 bits to provide the following:
\Rightarrow Error detection (called disparity control)
\Rightarrow Frame delimiting with data transparency: Any bit pattern can be sent with a way to mark the beginning and end of a frame
\Rightarrow Clock recovery: Signal transitions assist the receiver in finding the center of each bit, even if many contiguous ones (or zeros) are sent and the sender has a slightly different transmission rate
\Rightarrow D.C. voltage balance (on average, the signal spends an equal time positive and negative; this is required if the signal is AC coupled at the receiver

Gigabit Ethernet

Gigabit Ethernet

\Rightarrow Allows half- and full-duplex operation at speeds of 1000 Mbps
\Rightarrow Full-duplex is by far the most used approach
\Rightarrow For full duplex, CSMA/CD is not used, since the system works on point to point connections only
\Rightarrow Uses the 802.3 Ethernet frame format
\Rightarrow Addresses backward compatibility with 10BASE-T and 100BASE-T technologies
\Rightarrow Utilizes Fiber Channel physical layer technology, with the following options:

	Standard	Fiber Type	Diameter ($\mu \mathrm{m}$)	Modal BW ($\mathrm{MHz}^{*} \mathrm{~km}$)	Minimum Range (m)
SX stands for the short-wavelemgth option (850 nm)	$\begin{aligned} & \text { 1000BASE-SX } \\ & (850 \mathrm{~nm}) \end{aligned}$	MM MM MM MM	$\begin{array}{\|l\|} \hline 62.5 \\ 62.5 \\ 50 \\ 50 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 160 \\ 200 \\ 400 \\ 500 \\ \hline \end{array}$	2 to 220 2 to 275 2 to 500 2 to 550
LX stands for the longwavelemgth option (1300 nm)	$\begin{aligned} & \text { 1000BASE-LX } \\ & (1300 \mathrm{~nm}) \end{aligned}$	MM MM MM SM	$\begin{array}{\|l\|} \hline 62.5 \\ 50 \\ 50 \\ 9 \\ \hline \end{array}$	$\begin{aligned} & 500 \\ & 400 \\ & 500 \\ & \text { NA } \\ & \hline \end{aligned}$	2 to 550 2 to 550 2 to 550 2 to 5000

Gigabit Ethernet Layers

Gigabit Ethernet Standards

Worst-Case 1000BASE-SX Link Po		
Parameter	62.5-u 2 Multimode	
Modal bandwidth as measured at 850 nm (minimum, overfilled launch)	160	200
Link power budget	7.5	7.5
Operating distance	220	275
Channel insertion loss (@ 830 nm)	2.38	2.60
Link power penalties	4.27	4.29
Unallocated margin in link power budget	0.84	0.60

Worst-Case 1000BASE-LX Link Power Budget and Penalties

Parameter	$\mathbf{6 2 . 5 - \mu} \mathbf{2}$ Multimode
Modal bandwidth as measured at 1300 nm (minimum, overfilled launch)	500
Link power budget	7.5
Operating distance	550
Channel insertion loss (@ 1270 nm)	2.35
Link power penalties	3.48
Unallocated margin in link power budget	1.67

Worst-Case Long Haul Link Power Budget and Penalties

Parameter	$\mathbf{1 0 - \mu} \mathbf{2}$ Single-Mode
Link power budget	10.5
Operating distance	10,000
Channel insertion loss (@1280 nm)	7.8
Link power penalties	2.5
Unallocated margin in link power budget	0.2

Unallocated margin in link power budget 0.2

$\mathbf{5 0 - \mu}$ Multimode		Units 400
	500	
$\mathrm{MHz}^{*} \mathrm{~km}$		

50- μ Multimode		10- μ Single-Mode	Units
400	500	NA	MHz*km
7.5	7.5	8.0	dB
550	550	5000	meters
2.35	2.35	4.57	dB
5.08	3.96	3.27	dB
0.07	1.19	0.16	dB

[^0]
Gigabit Ethernet Fiber Cable Standards

Description	$\mathbf{6 2 . 5 - \mu m} \mathbf{1}$ Multimode	$\mathbf{5 0 - \mu m}$ Multimode	$\mathbf{1 0 - \mu m}$ Single-Mode	Units		
Nominal Wavelength 850 1300 850 1300	1300	nm				
Fiber cable attenuation (maximum)	3.75	1.5	3.5	1.5	0.5	$\mathrm{~dB} / \mathrm{km}$
Modal bandwidth (minimum, overfilled	160	200	500	400	400	NA

$2^{\text {nd }}$ Generation Optical Networks

\Rightarrow Current evolution of 1st Generation Optical Networks
\Rightarrow WDM and DWDM to increase link capacity
\Rightarrow Multichannel optical amplification for long haul distance
\Rightarrow OEO regenerators can be greatly eliminated
\Rightarrow 2nd Generation Optical Networks
\Rightarrow Perform routing and switching functions optically
\Rightarrow Map protocols directly to optical layer via WDM
\Rightarrow Allows some level of Bit-rate and Format transparency

Example OADM

Network Evolution

Optical Circuit \& Packet Switching

\Rightarrow Optical Circuit Switching, also called:
\Rightarrow OTN: Optical Transport Networks (by ITU)
\Rightarrow ASON: Automatically Switched Optical Network (by ITU)
\Rightarrow All-Optical Network
\Rightarrow Truly Optical Network
\Rightarrow is (nearly) ready for commercial deployment
\Rightarrow Year 2001 is probably the "Year Zero" for All-Optical (circuit switched) Networks
\Rightarrow Optical Packet Switching is still at the R\&D level
\Rightarrow Some testbeds have been implemented
\Rightarrow No one has ever been truly engineered
\Rightarrow We will see anyway a lot of development in this area in the next $4-5$ years

Why "True" Optical networking?

\Rightarrow Enabling technologies
\Rightarrow New potential offered by long-haul, not-repeatered optical transmission
\Rightarrow New devices for optical handling of WDM channels
\Rightarrow Motivations \& Drivers
\Rightarrow Wavelength reuse
\Rightarrow Avoid OEO conversion of "Passing-Through" traffic
\Rightarrow Allow efficient fault-protection

Long-Haul Transmission

\Rightarrow Optical WDM technology has reached a very good maturity
\Rightarrow WDM transmission on 40-100 channels on 400-500 Km using optical amplification (without OEO conversion) is commercially available from most major vendors
\Rightarrow An extension to much higher distances ($>1000 \mathrm{Km}$ up to transoceanic distances) is ready at the R\&D level, and (nearly?) ready at the commercial level
\Rightarrow Consequences
\Rightarrow OEO conversion, from a pure transmission point of view, is less and less required
\Rightarrow The need to place an OEO along a link will be more and more related to networking (switching, routing) requirements, and not to transmission
\Rightarrow It may be envisioned to cover extremely large areas (Europe, United States and more) with all-optical transmission, based on EDFA amplification and without OEO conversion

DXC "Passing-Through" Traffic

\Rightarrow In a digital cross connect (DXC) in a complex mesh network, most of the traffic has just to pass through the node, since it must simply be forwarded to next nodes
\Rightarrow Only a fraction of the total traffic has to be added or dropped locally
\Rightarrow The local add/drop traffic is naturally handled by OEO conversions
\Rightarrow On the passing-through traffic, OEO conversion is not strictly required
\Rightarrow If possible, the signal can be kept in the photonic domain
\Rightarrow Nowadays, OEO SONET systems satisfying long-haul WDM standards are extremely expensive
\Rightarrow A huge number of SONET OE and EO cards are required on a DXC, given by the input number of fibers times the number of wavelength per fiber

The ITU G. 872 standard

\Rightarrow Title: Architecture of Optical Transport Networks (OTN)
\Rightarrow This recommendation is at the basis of the current vision on OTN, i.e., on WDM reconfigurable networks
\Rightarrow Though the current network visions of vendors and carriers vary a lot, still most architecture are based on the ITU vision
\Rightarrow The bottom line
\Rightarrow Create an "Optical Layer" that resides below any "electrical" layer, being SONET, SDH, Gigabit Ethernet, etc
\Rightarrow The "electrical" layers have access to Optical Channels going through the network on a wavelength basis

ITU G. 872 layering

\Rightarrow Four layers are proposed by the Recommendation
\Rightarrow Optical Channel Layer (OCh layer)
\Rightarrow Optical Multiplex Section Layer
\Rightarrow Optical Transmission Section Layer
\Rightarrow Physical Media Layer
\Rightarrow The four layers basically maps on the lower three layers of the OSI model
\Rightarrow The Recommendation does not give technological details on the implementation, but rather gives general rules for the development of OTN

ITU G. 872 layering

Layer

Wavelength Routed Mesh Network

Ramaswami and Sivarajan, Optical Networks

Architectural Features

\Rightarrow Wavelength Reuse
\Rightarrow Wavelength Conversion
\Rightarrow Transparency
\Rightarrow Circuit Swicthing
\Rightarrow Survivability
\Rightarrow Lightpath Topology Engineering

Optical Circuit Switching (OCS)

Wavelength Reuse

\Rightarrow The number of wavelength currently available are on the order of 40 and will most likely reach 128 for high performance systems over the next several years.
\Rightarrow If we want to design networks that can support 1000's of nodes, we have to use architectures that don't rely on one wavelength per node.
\Rightarrow Similar to frequency reuse in wireless networks, wavelength reuse in optical networks can support a large number of users on a limited number of wavelengths

Example: Interconnected WDM rings: 8 nodes with 4 discrete wavelengths

Fault-Protection

\Rightarrow The issue of fault protection in WDM network is a fundamental issue
\Rightarrow A fiber cut may be easily interrupt hundreds of gigabit of transmission
\Rightarrow Fiber cut are actually mostly "bundle" cut, meaning that hundred of fiber may go out of service
\Rightarrow The restoration mechanisms on such bandwidth-massive networks, may become extremely complex
\Rightarrow The implementation of an optical layer can give a new "layer" in protection mechanism

Optical Reconfigurability

\Rightarrow A degree of optical reconfigurability may be useful to cope with:
\Rightarrow Changes in Connection Patterns
\Rightarrow Changes in Traffic Characteristics
\Rightarrow Provisioning and load balancing
\Rightarrow Network Operations and Management
\Rightarrow Topological updating, provisioning
\Rightarrow Network element maintenance
\Rightarrow Link/Node Failure and Restoration
\Rightarrow Dynamic changes in number of wavelengths on the fiber
\Rightarrow Transmitter, link, node and overhead (OH) channel failure

Optical Channel Layer (Och)

\Rightarrow Provides end-to-end networking of optical channels
\Rightarrow The channels are totally transparent, i.e., they can carry on a wavelength any kind of client formats (SONET/SDH at different bit rates, Gigabit Ethernet, ATM cell based formats, etc)
\Rightarrow Processes optical channel overhead information, to ensure the integrity of the optical channel
\Rightarrow Processes optical channel Operation and Maintenance (OAM) functions, such as
\Rightarrow Connection provisioning, Network survivability, QoS parameters, etc
\Rightarrow It is similar to OSI layer 3

Interfaces OCh/Client

\Rightarrow The interface (adaptation) between Och and the Client should implement the following functions:
\Rightarrow Independently of the Client characteristics, the SOURCE interface must generate a continuous data stream suitable for optical modulation, of defined bit rate and coding scheme (note that burst transmission is not available)
\Rightarrow The SINK interface must decode the received continuous data stream , and convert it in a format suitable for the Client
\Rightarrow Generation and termination of the overhead signals required by this layer

Optical Multiplex Section Layer (OMS)

\Rightarrow Provides the functionality required for networking a multi-channel (WDM) optical signal
\Rightarrow Multiplexing and Demultiplexing of the WDM signal
\Rightarrow Processes multiplex section overhead information, to ensure the integrity of the multiplex section
\Rightarrow Monitoring of the integrity of the WDM signal as a single entity
\Rightarrow OAM function of the WDM signal as a single entity
\Rightarrow It is similar to OSI layer 2
\Rightarrow Interface OMS/OCh
\Rightarrow SOURCE:
\Rightarrow modulation of N optical carriers
\Rightarrow Wavelength multiplexing
\Rightarrow Generation and termination of the overhead signals required by this layer
\Rightarrow SINK
\Rightarrow Wavelength demultiplexing
\Rightarrow Detection of each of the N optical signals

Optical Transmission and Physical Layer

\Rightarrow Optical Transmission Section layer
\Rightarrow Monitoring of the integrity of the optical transmission between
\Rightarrow OAM overhead functions at the transmission level
\Rightarrow Physical media layer
\Rightarrow It is concerned with the physical details of the transmission (fiber types, length, amplifiers, etc.)
\Rightarrow The specification of the physical layer are outside the scope of the Recommendation

ROADMs and S－ROADMs （Scalable ROADM）

Service Interfaces（e．g．io GbE，SONET）
Grooming Transponders（e．g． 8 x 622 Mbps to 10 Gbps

きききき

Photonic Crossconnects

Wavelength Switched (nonblocking)

ROADM Technologies

\Rightarrow Arrayed Waveguide Gratings (AWG)
\Rightarrow Tunable Optical Filters (Fiber Bragg gratings, thin film filters)
\Rightarrow Thermo-optic (Glass or silicon)
\Rightarrow Liquid Crystal
\Rightarrow Electro-optic
$\Rightarrow \quad$ LiNbO3, InGaAsP, GaAs, Liquid Crystal
Mach-Zehnder, Fabry-Perot, Michelson Interferometers
\Rightarrow Acousto-optic filters and switches (AOTF)
\Rightarrow Gain (splitter with gain on each arm)
$\Rightarrow \quad \mathrm{Er}: \mathrm{SiO} 2$, InGaAsP
\Rightarrow MEMS (MicroElectroMechanical Systems)

Fixed Single Wavelength Add/Drop

\Rightarrow The simplest architectures is based on nodes equipped with a fixed adddrop on a single wavelength
\Rightarrow It can be used on a single-fiber ring
\Rightarrow Such an optical devices is totally available nowadays at the commercial level, on any wavelength of the ITU grid
\Rightarrow Most common solutions are based on gratings, together with recirculators, isolators and couplers

Static Multiwavelength Add/Drop

\Rightarrow This solution reduces the number of SONET ADMs over dropping every wavelength at a SONET ADM
\Rightarrow It allows to add/drop more than one wavelength per node
\Rightarrow It can be used on a bi-directional ring
\Rightarrow It is manually reconfigurable, by changing optical connections on a patch panel

Thermo-Optic Switches

- 2D so small switches are best (<32 ports)
- Power consumption (0.5 W per switch)
- Speed (typically 6-8 ms)
- Loss ($1 \mathrm{~dB} / \mathrm{cm}$ typical)
- Size: 4" wafer for 16×16 switch

(Mach-Zehnder with thermal phase shift)

NTT 8X8 thermo-optic switch

2D MicroElectroMechanical Systems (MEMS) Mirrors

- Low loss for small sizes (<32×32)
- Low PDL and PMD
- Digital operation
- Sticking due to friction an issue

Output Fibers

L. Lin, "Free-Space Micromachined Optical-Switching Technologies and Architectures," Topical Meeting on Photonics in Switching, Santa Barbara, CA (1999)

Reconfigurable OADMs (ROADM)

Tunable FBGs for ROADM

Acoustooptic Tunable Filters

- Medium loss (greater than 6 dB)
- High PMD and PDL, polarization diverse architectures necessary
- Multichannel crosstalk issues

$$
\underset{\text { TM to TE conversion for } \lambda_{\mathrm{i}}}{\operatorname{TE}} \frac{\eta_{T M}}{\lambda}=\frac{\eta_{T E}}{\lambda} \pm \frac{1}{\Lambda}
$$

Homework \#1, Due April 24th

\Rightarrow Problem 6.1 Ramaswami
\Rightarrow Problem 6.3 Ramaswami
\Rightarrow Problem 6.4 Ramaswami
\Rightarrow Problem 7.1 Ramaswami
\Rightarrow Problem 7.2 Ramaswami
\Rightarrow Problem 7.4 Ramaswami
\Rightarrow Problem 7.5 Ramaswami

[^0]: Units
 dB
 meters
 dB
 dB
 dB

