

Lecture 6

ECE162C, Spring 2008, Prof. Blumenthal

8.4 Optical NetworkManagement and Control

Network Monitoring and Control

- ⇒ Measure the state of the links, nodes and data channels:
 - \Rightarrow With minimal disturbance to the signals in the fiber
 - \Rightarrow With minimal complexity in the measuring technique
 - ⇒ With minimum prior knowledge of the information source or the data transport history
- Once we measure state or detect degradation, how do we
 - \Rightarrow Reroute information
 - ⇒ Inform appropriate network elements and entities of situation
- \Rightarrow How is management and monitoring
 - ⇒ Performed in a fast reconfigurable WDM all-optical network

Monitoring and Control Subnets

Overhead Networks

- ⇒ Operations and Maintenance (OAM)
 - ⇒ It is usually implemented on an in-fiber, out-of-band wavelength, 1510 nm or 1310 nm
 - \Rightarrow In this case, the OH channel does not traverse optical path with data since it is regenerated at each node.
 - ⇒ It can also be sent on a totally different and separated structure (out-of-fiber solution)
 - \Rightarrow The OH network should be extremely resilient
 - ⇒ in case of catastrophic events, out-of-fiber OH may be very useful
- ⇒ Monitoring (of the Optical link, path, etc)
 - ⇒ Both In-band and out-of-band solutions are used
 - ⇒ Typical: Low frequency pilot tones: 10-100 KHz at about 10% modulation depth of the digital signal.
 - Proposed: Optical subcarrier multiplexing: narrowband RF channel (in-band or out-of-band) at about 5% modulation depth

Monitoring Signaling and OAM

⇒ Operations and Maintenance (OAM)

- Overhead (OH) Channel: Out-of-band wavelength, 1510 nm or 1310 nm. Send measurement and fault information throughout network.
- OH channel does not traverse optical path with data since it is regenerated at each node. Limited monitoring use, but can be used to report monitoring results.

\Rightarrow Monitoring

- \Rightarrow In band or out-of-band.
- ⇒ Low frequency pilot tones: 10-100 KHz at about 10% modulation depth of the digital signal.
- ⇒ Optical subcarrier multiplexing: narrowband RF channel (inband or out-of-band) at about 5% modulation depth.

Monitoring in Reconfigurable Networks

\Rightarrow Low frequency pilot tones

- \Rightarrow Support very low frequency modulation
- ➡ Cannot carry information about fast reconfiguration events
- ⇒ Can be buried below low frequency cutoff of data channel
- ⇒ Supports data transparency

⇒ Optical Subcarrier Tones

- ⇒ Support wideband modulation
- ⇒ Can detect information about fast reconfiguration events
- ⇒ Can be placed outside or inside baseband modulation
- \Rightarrow Supports data transparency

Monitoring Classes

\Rightarrow Power Detection

- Must distinguish between channel loss and "strings of zeros" transmission
- ⇒ Frequency Monitoring
 - \Rightarrow Must be within 1% of channel bandwidth
 - ⇒ Stabilization of frequency dependent components
- ⇒ Performance Monitoring
 - \Rightarrow Difficult to use BER as direct measure
 - \Rightarrow SNR and eye pattern statistics
 - ⇒ Direct distortion measurement
 - ⇒ Direct crosstalk measurement

Channel Equalization: Monitoring

Multichannel Optical Analyzer

Optical Spectrum Analyzer

Channel Equalization: Control

ECE162C, Spring 2008, Prof. Blumenthal

Optical Subcarrier WDM Channel Equalization and Monitoring

R. Gaudino and D. J. Blumenthal, OFC '98

OTN and SONET Monitoring

- ⇒ The OTN and SONET monitoring functions are based on totally different approaches
 - ⇒ SONET: the digital stream must be OEO converted
 - \Rightarrow On the digital stream, fields are reserved to perform BER measurements
 - \Rightarrow OTN: monitoring is done at the optical level
 - \Rightarrow It is mainly non-intrusive: only a small fraction of optical power can be tapped
 - \Rightarrow It is potentially
 - ⇒ less expensive
 - \Rightarrow very fast
 - \Rightarrow It can be performed by a single system on the full set of WDM channels

Performance Monitoring in SDH Networks

Issue: Not transparent since framing is required to do parity check.

8.5 Survivability, Protection and Restoration

Survivability and Restoration

- \Rightarrow **Protection** techniques involve redundant capacities within the network.
- ⇒ **Survivability** is the ability to deliver service during failures.
- \Rightarrow **Restoration time** is the amount of time to recover from a failure.

Protection Switching

Protection and Topologies

- \Rightarrow 1+1 or 1:1 strategies are typically suited for multi-fiber ring architectures
 - ⇒ The solution proposed for OTN are very similar to those used in SONET, and are based on loopback capabilities
- \Rightarrow 1:N is suited for mesh architectures
 - ⇒ It offers the best use of bandwidths, but it is much more complex to be implemented
- ⇒ The solution for the near-term seems to be 1:1 on rings, while the long term solution will probably be 1:N over optical meshes

Path and Line Switching

 \Rightarrow Path switching:

Protection in Optical Rings - UPSR

- Unidirectional Path-Switched Rings (UPSRs)
 - ⇒ It is directly derived from SONET, but can be directly applied in optics
- \Rightarrow It is a 1+1 protection on a dual fiber ring
- ⇒ The figure shows a connection from node A to node B
- Under normal operating conditions, the SAME traffic is sent simultaneously on the working and protection fibers
- Node B receives normally two copies of the same channel
- ⇒ In case of a (single) link failure, one of the two copies is still available

Two-fiber UPSR

- ⇒ The allocated protection capacity is equal to the working capacity
- ⇒ A bi-directional connection on a two fibers UPSR completely uses a wavelength in both rings (working and protection)
- Its main drawback is the fact that, if a bidirectional connection between two nodes is needed, no spatial reuse is possible
 - ⇒ i.e., the same wavelength is NOT available for any other bi-directional (and protected connection)

Bi-directional connection on working fiberBi-directional connection on protection fiber

Two-fiber UPSR

⇒ The USPR approach is quite simple, and is often implemented in local exchange or access network

- \Rightarrow It is attractive for simplicity, and thus lower cost,
 - \Rightarrow The only required action, in case of failure, is at the receiver
 - \Rightarrow The length of the ring determines the minimum restoration time of the system
- \Rightarrow If most of the links are unidirectional, than spatial reuse is possible
 - \Rightarrow This is often in access networks, where one one acts as a hub

Protection in Optical Rings: BLSRs

Protection in BLSR/4

- \Rightarrow 1:1 protection is usually implemented on BLSR/4
- \Rightarrow Two options are available
 - \Rightarrow Span protection
 - \Rightarrow Line protection

ECE162C, Spring 2008, Prof. Blumenthal

Protection Interworking Between Layers

- Different layers will have different protection mechanisms, each with unique restoration time constants
- Some networking architecture may not have any protection mechanism so may rely on an optical layer to do protection switching
- ⇒ Protection switching in one layer should not negatively impact protection in other layers

Protection Switching

ECE162C, Spring 2008, Prof. Blumenthal

Fast Transients with Cascaded EDFAs

- Power transients in surviving channels due to cross gain saturation in EDFAs due to
 - \Rightarrow Wavelength channels added or dropped
 - \Rightarrow Network reconfigurations
 - \Rightarrow Link, node or amplifier failures
- Speed of power transients proportional to number of amplifiers (Zyskind, OFC '96)
 - \Rightarrow 1/N x 10s of microseconds for chain of N amplifiers
- \Rightarrow Error bursts will occur if
 - \Rightarrow Receiver dynamic range exceeded
 - \Rightarrow Fiber nonlinearity thresholds exceeded

Detecting Fiber Cuts

ECE162C, Spring 2008, Prof. Blumenthal

Lecture 0.27

Fast Power Transients in Optically Amplified WDM Networks

Measured output power as a function of time after 2, 4, 6, 8, 10, and 12 EDFA's. At time t = 0 one laser is blocked, corresponding to loss of 4 of 8 signal channels.

J. L. Zyskind et.al., OFC'96, PD31-2

- Adding or dropping channels in a WDM Network which contains N Erbium Doped Fiber Amplifiers, either in nodes or regenerators, would cause a power fluctuation in the surviving channels, sometimes even doubling the power in EDFAs farther down the chain.
- Typical time scales for gain changes in EDFAs are of the order of tens of microseconds.
- ⇒ To limit performance penalties, power fluctuations should be limited to 1dB.
- ⇒ Response times of the EDFAs should be 100 - 200 ns.
- Solution: Dynamic gain control or gain clamping

Stabilization with Gain Clamped EDFAs

∋Address problem of channel add/drop rates on order of EDFA gain relaxation oscillation frequency and gain clamped amplifier loop time constant

S. Y. Kim et. al., Electron. Letts., Aug. 1997

ECE162C, Spring 2008, Prof. Blumenthal

Power Fluctuations in Cascaded Channel Power Equalizers

S. J. B. Yoo et. al., OFC '98