

#### Lecture 7

ECE228C, Spring 2008, Prof. Blumenthal

Lecture 7.1

# WDM Network Design

Homework #3:

- 8.2 Ramaswami
- 8.3 Ramaswami
- 8.4 Ramaswami
- 8.7 Ramaswami

## Cost Trade-Offs

 $\Rightarrow$  Consider a 2-connected network topology.

 $\Rightarrow$  Two node-wise disjoint routes between every pair of nodes in the network.

 $\Rightarrow$  Examples can include ring and mesh 2-connected.

 $\Rightarrow$  Rings are widely deployed today, but networks are moving to mesh connected. Lower fiber deployment cost - N nodes requires only N links for a 2-connected network.

 $\Rightarrow$  Consider 3 example topologies



## Cost Trade-Offs Example Analysis

 $\Rightarrow$  Consider a traffic matrix with

- $\Rightarrow$  *t* units of traffic to be routed from one IP router to all other routers on the network
- $\Rightarrow$  *N* is the number of nodes on the network
- $\Rightarrow$  Assume uniform traffic, i.e. *t*/(*N-1*) units of traffic routed between every pair of routers.
- $\Rightarrow$  Normalize the capacity of a wavelength to 1 unit.
- $\Rightarrow$  RWA problem and assumptions
  - $\Rightarrow$  Find a route for each lightpath and assign it a wavelength on each link.
  - $\Rightarrow$  Assume lightpath must be assigned the same wavelength on all links it traverses (no  $\lambda$ -conversion)
  - $\Rightarrow$  Assume no two lightpaths traversing the same link can be assigned the same wavelength (no blocking)

## Point-to-Point WDM Ring



⇒ For N even, the traffic load in units of lightpaths and number of wavelengths required are





⇒ For W wavelengths on each fiber we can set up W lightpaths between each pair of adjacent nodes

 $\Rightarrow$  Assume we route traffic along the "shortest path" between source and destination

 $\Rightarrow$  Example t=3, N=4

L = 2W = 2

⇒ Number of router ports, given each wavelength is received and transmitted at each node

$$Q = 2W$$

ECE228C, Spring 2008, Prof. Blumenthal

Lecture 7.5

# Hubbed WDM Ring Architecture



→ Number of router ports, given each wavelength is received and transmitted at each node

$$Q = 2 \lceil t \rceil$$

⇒ Assume lightpaths are routed and assigned wavelengths as follows:

⇒Two adjacent nodes use different paths alng the ring and reuse the same set of wavelengths

ECE228C, Spring 2008, Prof. Blumenthal

⇒Each IP node has just enough ports to source/sink traffic to/from that node.

- ⇒Lightpaths are established between each node and the hub node h
- ⇒ Traffic from a non-hub node to another non-hub node is routed along two lightpaths i to h, then h to j.

 $\Rightarrow$  Setup t lightpaths from each node to the hub node

 $\Rightarrow$  Then the number of wavelength required is

$$W = \frac{N}{2} [t]$$

 $\Rightarrow$  The worst case number of hops is

$$H = N - 1$$

⇒ Tradeoffs: OADM and IP Hub have to scale with number of nodes and number of wavelengths

# Hubbed WDM Ring Architecture



⇒ Number of router ports, given each wavelength is received and transmitted at each node

$$Q = 2 \lceil t \rceil$$

⇒ Assume lightpaths are routed and assigned wavelengths as follows:

⇒Two adjacent nodes use different paths alng the ring and reuse the same set of wavelengths

ECE228C, Spring 2008, Prof. Blumenthal

⇒Each IP node has just enough ports to source/sink traffic to/from that node.

- ⇒Lightpaths are established between each node and the hub node h
- ⇒ Traffic from a non-hub node to another non-hub node is routed along two lightpaths i to h, then h to j.

 $\Rightarrow$  Setup t lightpaths from each node to the hub node

 $\Rightarrow$  Then the number of wavelength required is

$$W = \frac{N}{2} [t]$$

 $\Rightarrow$  The worst case number of hops is

$$H = N - 1$$

⇒ Tradeoffs: OADM and IP Hub have to scale with number of nodes and number of wavelengths

## **All-Optical Architecture**



 $\Rightarrow$  Number of lightpaths between each pair of nodes to handle t/(N-1) units of traffic between each node pair

$$\left[ t / (N-1) \right]$$

 $\Rightarrow$  Number of router ports per node

$$Q = (N-1) \left[ t / (N-1) \right]$$

Data is transmitted on a single lightpath beteween each source and destination.
Data is passed by a node optically if it is not destined for that node (I.e. data does not terminate electronically at an node that is not the source or destination).

 $\Rightarrow$  Number of wavelengths depend on how the lightpaths are routed. For N even

$$W = \left[\frac{t}{N-1}\right] \left(\frac{N^2}{8} + \frac{N}{4}\right)$$

## **Ring Architecture Comparison**

 $\Rightarrow$  For any design, Q  $\ge$  upper bound on t

⇒ Lower bound on number of wavelengths is found from the minimum average number of hops. Assume  $h_{ij}$  is the minimum distance between nodes *i* and *j* in terms of number of hops. ⇒ Minimum average number of hops,  $H_{min}$  is

$$H_{\min} = \frac{\sum_{i=1}^{N} \sum_{j=1}^{N} h_{ij}}{N(N-1)}$$

 $\Rightarrow$ Which for a ring network is

$$(H_{\min})\Big|_{ring} = \frac{N+1}{4} + \frac{1}{4(N-1)}$$

 $\Rightarrow$  The maximum traffic load on any link is greater than the average load on that link

$$\begin{split} L_{link} &\geq L_{avg} = \frac{H_{\min} \times \text{Total Traffic}}{\text{Number of Links}} \\ &= \frac{H_{\min} \times \frac{1}{2}Nt}{N} \\ &= \left(\frac{N+1}{8} + \frac{1}{8(N-1)}\right) \\ W &\geq L \end{split}$$

ECE228C, Spring 2008, Prof. Blumenthal

Lecture 7.9

## **Ring Architecture Comparison**

#### N = 8 Nodes



Ramaswami, Optical Networks

N = 8 Nodes