

Lecture 8

ECE228C, Spring 2008, Prof. Blumenthal

WDM Network Design

Homework #3:

- 8.2 Ramaswami
- 8.3 Ramaswami
- 8.4 Ramaswami
- 8.7 Ramaswami

LTD and RWA Problems

 \Rightarrow Look at a design problem where

The underlying fiber topology does not pose any constraint

 \Rightarrow All lightpaths are bi-directional

 \Rightarrow Each node has an IP router with at most Δ ports connecting to other IP routers

 \Rightarrow Number of lightpaths in the network is therefore constrained on Δ

LTD and RWA Problems

 \Rightarrow Assume a statistical model for IP traffic

⇒ Arrival rate for packets for source-destination (s-d) pair (*s*,*d*) is λ^{sd} , s,d = 1, ...,m ⇒ b_{ij} , i,j = 1, ...,n, i≠j are binary variables for each possible lightpath (i,j).

⇒ Solution to the lightpath design problem is to specify the set $\{b_{ij}\}$ ⇒ a_{ij}^{sd} is the fraction of traffic between pair (*s*,*d*) routed over link (*i*,*j*) ⇒ $\lambda_{ij}^{sd} = a_{ij}^{sd} \lambda^{sd}$ is the traffic in packets/sec between pair (*s*,*d*) routed over link (*i*,*j*)

 \Rightarrow Total traffic over all pairs routed over link (i,j) is

$$\lambda = \sum_{sd} \lambda_{ij}^{sd}$$

Congestion Parameter and Queuing Delay

 \Rightarrow Define *congestion* parameter $\lambda_{max} = max_{ij} \{\lambda_{ij}\}$

 $\Rightarrow \text{ We must determine variables } \lambda_{ij}^{sd}, \lambda_{max} \text{ and } \tilde{\lambda}_{ij} \\\Rightarrow \text{ The process of determining } \lambda_{ij}^{sd}, \lambda_{max} \text{ and } \lambda_{ij} \text{ is equivalent to the problem}$ of finding a routing algorithm

 \Rightarrow Example:

 \Rightarrow Packet transmission times are exponentially distributed (Poisson Process) with mean time $1/\mu$ seconds.

 \Rightarrow Model each link as an M/M/1 queue, where it is assumed that traffic offered to a link in the network is independent of the traffic offered to other links.

 \Rightarrow The average queuing delay under these assumptions is

$$d_{ij} = \frac{1}{\mu - \lambda_{ij}}$$

Throughput

 \Rightarrow *Throughput* is defined as minimum value of the offered load for which any link experiences infinite delay, which happens when

$$\lambda_{\max} = \max_{ij} \lambda_{ij} = \mu$$

⇒ Performance objective

Minimize
$$(\lambda_{\max})$$

 \Rightarrow Subject to the following flow conservation at each node

$$\sum_{j} \lambda_{ij}^{sd} - \sum_{j} \lambda_{ji}^{sd} = \begin{cases} \lambda^{sd} & \text{if } s = i, \\ -\lambda^{sd} & \text{if } d = i, \\ 0 & \text{otherwise,} \end{cases} \quad \text{for all } s, d, i$$

 \Rightarrow Subject to the total flow on a logical link

$$\begin{split} \lambda_{ij} &= \sum_{s,d} \lambda_{ij}^{sd}, \quad \text{for all } i, j, \\ \lambda_{ij} &\leq \lambda_{\max}, \qquad \text{for all } i, j, \\ \lambda_{ij}^{sd} &\leq b_{ij} \lambda^{sd}, \qquad \text{for all } i, j, \end{split}$$

ECE228C, Spring 2008, Prof. Blumenthal

Lecture 8.6

Throughput

 \Rightarrow Subject to degree constraints

$$\begin{split} &\sum_{i} b_{ij} \leq \Delta, \quad \text{ for all } j, \\ &\sum_{j} b_{ij} \leq \Delta, \quad \text{ for all } i. \end{split}$$

⇒ Subject to bidirectional lightpath constraint

 $b_{ij} = b_{ji}$, for all i, j.

Subject to Nonnegativity and integer constraints

 $\lambda_{ij}^{sd}, \lambda_{ij}, \lambda_{\max} \ge 0, \quad \text{for all } i, j, s, d$ $b_{ij} \in \{0, 1\}, \quad \text{for all } i, j.$

Throughput

 \Rightarrow We associate packets routed between pair (s,d) as the *flow* of a commodities.

- \Rightarrow The flow conservation constraint at node *i* yields the net flow out of node *i* for one commodity (*s*,*d*).
- \Rightarrow The net flow is the difference between the outgoing and ingoing flows.
- \Rightarrow The flow conservation is 0 if a node is neither a source or destination of that particular commodity.
- \Rightarrow If node *i* is the source of the flow (*i*=*s*) the net flow = λ^{sd}
- \Rightarrow If node *i* is the destination of the flow (*i*=*d*) the net flow = - λ^{sd}