

Lecture 9

ECE228C, Spring 2008, Prof. Blumenthal

Lecture 9.1

Homework

Homework #3:

- 8.2 Ramaswami
- 8.3 Ramaswami
- 8.4 Ramaswami
- 8.7 Ramaswami

Intro to Queueing Theory

 \Rightarrow A simple queue model is shown below. It handles data packets that arrive at an average rate of λ packets/time.

The packets queue up for service in the buffer and are served (according to some service discipline) to the output at an average rate of μ packets/time.

 \Rightarrow Define link *utilization* or *traffic intensity* (ρ)as

$$\rho = \frac{\lambda}{\mu}$$
Packets Arriving $\xrightarrow{\lambda}$ | | μ Packets Departing

Performance

 \Rightarrow We are interested the dependence on μ and the buffer size on the time delay, blocking performance and packet throughput.

- \Rightarrow These performance parameters depend on the *probability of state* of the queue.
- \Rightarrow In order to determine the probability of state of the queue we need to know
 - ⇒ The *packet arrival process* (or statistics)
 - ⇒ The *packet length distribution*
 - ⇒ The queue *service discipline* (for example, FCFS, FIFO, LCFS)

M/M/1 Queue

 \Rightarrow An M/M/1 queue is a single server queue, that assumes Poisson packet arrival, exponential service-time statistics and FIFO service \Rightarrow A/B/C denotes A = Arrival distribution, B = Service distribution and C = Number of servers used.

 \Rightarrow M stands for Markov process which translates to Poisson arrival statistics and exponential inter-packet arrival (or transmission).

 \Rightarrow Probabilities of state are denoted p_n , which is the probability that there are *n* customers (packets) at the queue. This number includes that packet that is currently being served.

 \Rightarrow We assume in steady state that the p_n do not change with time.

Buffer Occupancy State

⇒ The probability $p_n(t+\Delta t)$ that there are *n* customers in the queue at time t+ Δt , derives from the probability $p_n(t)$.

⇒ If queue was in state *n* at time $t+\Delta t$, it only could have been in states *n-1*, *n* or *n+1* at time *t*.

 \Rightarrow The probability of being in state *n* at time *t*+ Δt is given by the sum of the mutually exclusive probabilities that the queue was in state *n*-1, *n* or *n*+1 at time *t* each weighted by the independent probability of arriving at state *n* in Δ *t* units of time.

M. Schwarz, Telecommunications Networks

M/M/1 Queue Occupancy State

 $p_{n}(t + \Delta t) = p_{n}(t) [(1 - \lambda\Delta t)(1 - \mu\Delta t) + \mu\Delta t \ \lambda\Delta t + O(\Delta t)]$ $+ p_{n-1}(t) [\lambda\Delta t](1 - \mu\Delta t) + O(\Delta t)]$ $+ p_{n+1}(t) [\mu\Delta t](1 - \lambda\Delta t) + O(\Delta t)]$ $Dropping terms <math>O(\Delta t)$ $p_{n}(t + \Delta t) = [1 - (\lambda + \mu)\Delta t] p_{n}(t) + \lambda\Delta t p_{n-1}(t) + \mu\Delta t p_{n+1}(t)$ $Expanding <math>p_{n}(t + \Delta t)$ in a Taylor Series, we can write as a difference function $p_{n}(t + \Delta t) = p_{n}(t) + \frac{dp_{n}(t)}{dt}\Delta t$ $\frac{dp_{n}(t)}{dt} = -(\lambda + \mu)p_{n}(t) + \lambda p_{n-1}(t) + \mu p_{n+1}(t)$ For steady state $\frac{dp_{n}(t)}{dt} = 0$

 $(\lambda + \mu)p_n = \lambda p_{n-1} + \mu p_{n+1}, n \ge 1$

Steady State

 \Rightarrow The solution to the steady state equation yields a Geometric Distribution for the steady M/M/1 infinite queue state probability distribution.

 $\lambda p_n = \mu p_{n+1}$ or for n processes $p_n = \rho^n p_0$ $\rho = \frac{\lambda}{\mu}$ or for an infinite queue $p_0 = (1 - \rho)$ $p_n = (1 - \rho)\rho^n \text{ for } \rho = \frac{\lambda}{\mu} < 1$

M. Schwarz, Telecommunications Networks

Lecture 9.8