Lecture 9

Homework

Homework \#3:
8.2 Ramaswami
8.3 Ramaswami
8.4 Ramaswami
8.7 Ramaswami

Intro to Queueing Theory

\Rightarrow A simple queue model is shown below. It handles data packets that arrive at an average rate of λ packets/time.
\Rightarrow The packets queue up for service in the buffer and are served (according to some service discipline) to the output at an average rate of μ packets/time.
\Rightarrow Define link utilization or traffic intensity (ρ) as

$$
\rho \equiv \frac{\lambda}{\mu}
$$

Performance

\Rightarrow We are interested the dependence on μ and the buffer size on the time delay, blocking performance and packet throughput.
\Rightarrow These performance parameters depend on the probability of state
of the queue.
\Rightarrow In order to determine the probability of state of the queue we need
to know
\Rightarrow The packet arrival process (or statistics)
\Rightarrow The packet length distribution
\Rightarrow The queue service discipline (for example, FCFS, FIFO, LCFS)

M/M/1 Queue

$\Rightarrow A n M / M / 1$ queue is a single server queue, that assumes Poisson packet arrival, exponential service-time statistics and FIFO service $\Rightarrow A / B / C$ denotes $A=$ Arrival distribution, $B=$ Service distribution and $\mathrm{C}=$ Number of servers used.
\Rightarrow M stands for Markov process which translates to Poisson arrival statistics and exponential inter-packet arrival (or transmission).
\Rightarrow Probabilities of state are denoted \boldsymbol{p}_{n}, which is the probability that there are \boldsymbol{n} customers (packets) at the queue. This number includes that packet that is currently being served.
\Rightarrow We assume in steady state that the $\boldsymbol{p}_{\boldsymbol{n}}$ do not change with time.

Buffer Occupancy State

\Rightarrow The probability $\boldsymbol{p}_{\boldsymbol{n}}(\boldsymbol{t}+\Delta \boldsymbol{t})$ that there are \boldsymbol{n} customers in the queue at time $t+$ Δt, derives from the probability $p_{\mathrm{n}}(\mathrm{t})$.
\Rightarrow If queue was in state \boldsymbol{n} at time $\boldsymbol{t}+\boldsymbol{\Delta t}$, it only could have been in states $\boldsymbol{n}-\mathbf{1}$, \boldsymbol{n} or $\boldsymbol{n}+\boldsymbol{1}$ at time \boldsymbol{t}.
\Rightarrow The probability of being in state \boldsymbol{n} at time $\boldsymbol{t}+\boldsymbol{\Delta t}$ is given by the sum of the mutually exclusive probabilities that the queue was in state $\boldsymbol{n - 1}, \boldsymbol{n}$ or $\boldsymbol{n}+\boldsymbol{1}$ at time \boldsymbol{t} each weighted by the independent probability of arriving at state \boldsymbol{n} in $\boldsymbol{\Delta}$ t units of time.

M/M/1 Queue Occupancy State

$$
\begin{aligned}
& p_{n}(t+\Delta t)=p_{n}(t)[(1-\lambda \Delta t)(1-\mu \Delta t)+\mu \Delta t \lambda \Delta t+O(\Delta t)] \\
& \left.+p_{n-1}(t)[\lambda \Delta t](1-\mu \Delta t)+O(\Delta t)\right] \\
& \left.+p_{n+1}(t)[\mu \Delta t](1-\lambda \Delta t)+O(\Delta t)\right] \\
& \text { Dropping terms } O(\Delta t) \\
& p_{n}(t+\Delta t)=[1-(\lambda+\mu) \Delta t] p_{n}(t)+\lambda \Delta t p_{n-1}(t)+\mu \Delta t p_{n+1}(t)
\end{aligned}
$$

Expanding $p_{n}(t+\Delta t)$ in a Taylor Series, we can write as a difference function

$$
\begin{aligned}
& p_{n}(t+\Delta t)=p_{n}(t)+\frac{d p_{n}(t)}{d t} \Delta t \\
& \frac{d p_{n}(t)}{d t}=-(\lambda+\mu) p_{n}(t)+\lambda p_{n-1}(t)+\mu p_{n+1}(t)
\end{aligned}
$$

For steady state

$$
\begin{aligned}
& \frac{d p_{n}(t)}{d t}=0 \\
& (\lambda+\mu) p_{n}=\lambda p_{n-1}+\mu p_{n+1}, n \geq 1
\end{aligned}
$$

Steady State

\Rightarrow The solution to the steady state equation yields a Geometric Distribution for the steady $\mathrm{M} / \mathrm{M} / 1$ infinite queue state probability distribution.

$$
\lambda p_{n}=\mu p_{n+1}
$$

or for n processes

$p_{n}=\rho^{n} p_{0}$
$\rho \equiv \frac{\lambda}{\mu}$
or for an infinite queue

$$
\begin{aligned}
& p_{0}=(1-\rho) \\
& p_{n}=(1-\rho) \rho^{n} \text { for } \rho \equiv \frac{\lambda}{\mu}<1
\end{aligned}
$$

M. Schwarz, Telecommunications Networks

