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Homework

Homework #3:
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Intro to Queueing Theory

➯ A simple queue model is shown below. It handles data packets that
arrive at an average rate of λ packets/time.
➯The  packets queue up for service in the buffer and are served
(according to some service discipline) to the output at an average rate
of µ packets/time.
➯ Define link utilization or traffic intensity (ρ)as
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Performance

➯ We are interested the dependence on µ  and the buffer size on the
time delay, blocking performance and packet throughput.
➯ These performance parameters depend on the probability of state
of the queue.
➯ In order to determine the probability of state of the queue we need
to know
➯ The packet arrival process (or statistics)
➯ The packet length distribution
➯ The queue service discipline (for example, FCFS, FIFO, LCFS)
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M/M/1 Queue

➯ An M/M/1 queue is a single server queue, that assumes Poisson
packet arrival, exponential service-time statistics and FIFO service
➯ A/B/C denotes A = Arrival distribution, B = Service distribution
and C = Number of servers used.
➯ M stands for Markov process which translates to Poisson arrival
statistics and exponential inter-packet arrival (or transmission).
➯ Probabilities of state are denoted pn, which is the probability that
there are n customers (packets) at the queue. This number includes
that packet that is currently being served.
➯ We assume in steady state that the pn do not change with time.
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Buffer Occupancy State

➯ The probability pn(t+Δt) that there are n customers in the queue at time t+
Δt, derives from the probability pn(t).
➯ If queue was in state n at time t+Δt, it only could have been in states n-1,
n or n+1 at time t.
➯ The probability of being in state n at time t+Δt is given by the sum of the
mutually exclusive probabilities that the queue was in state n-1, n or n+1 at
time t each weighted by the independent probability of arriving at state n in Δ
t units of time.

M. Schwarz, Telecommunications Networks
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M/M/1 Queue Occupancy State

 

pn t + !t( ) = pn t( ) 1" #!t( ) 1" µ!t( ) + µ!t � #!t +O(!t)$% &'

+ pn"1 t( ) #!t] 1" µ!t( ) +O(!t)$% &'

+ pn+1 t( ) µ!t] 1" #!t( ) +O(!t)$% &'

Dropping terms O(!t)

pn t + !t( ) = 1" # + µ( )!t$% &' pn t( ) + #!tpn"1 t( ) + µ!tpn+1 t( )

Expanding pn t + !t( )  in a Taylor Series, we can write as a difference function

pn t + !t( ) = pn t( ) +
dpn t( )
dt

!t

dpn t( )
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= " # + µ( ) pn t( ) + #pn"1 t( ) + µpn+1 t( )

For steady state

dpn t( )
dt

= 0
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Steady State

➯ The solution to the steady state equation yields a Geometric Distribution
for the steady M/M/1 infinite queue state probability distribution.

!p
n
= µp

n+1

or for n processes

p
n
= "n

p0

" #
!

µ

or for an infinite queue

p0 = (1$ ")

p
n
= (1$ ")"n  for " #

!

µ
< 1
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