ECE 235: Problem Set 2

Assigned: Monday October 5
Due: Monday October 12
Reading: Hajek, Chapter 1, Sections 3.1-3.4
Topics: Probability and random variables; jointly Gaussian random variables
Reminder: Probability quiz in class on Tuesday, October 13
Agenda for this week: We will consolidate our probability review on Tuesday and then start on Chapter 3. We will start on Chapter 2 after covering part of Chapter 3.
Practice problems (not to be turned in): The even numbered problems in Chapter 1, up to Problem 1.30. Compare your solutions with the solutions provided to make sure you understand the concepts.
Problem 1: Consider the random variable X with CDF F_{X} as in Problem 1.11.
(a) Given a random variable U which is uniform over $[0,1]$, specify in detail the transformation $g(U)=$ $F_{X}^{-1}(U)$ that maps it to a random variable with CDF F_{X}.
(b) Use simulations (e.g., using matlab) to estimate $E[X]$. Compare the result with the exact answer.
(c) Once you are happy that your program works, use them to estimate $E\left[\cos \left(X^{3}\right)\right]$, a quantity that is difficult to compute analytically.
Problem 2: Two random variables X and Y have joint density

$$
p_{X, Y}(x, y)= \begin{cases}K e^{-\frac{2 x^{2}+y^{2}}{2}} & x y \geq 0 \\ 0 & x y<0\end{cases}
$$

(a) Find K.
(b) Show that X and Y are each Gaussian random variables.
(c) Express the probability $P\left[X^{2}+X>2\right]$ in terms of the Q function.
(d) Are X and Y jointly Gaussian?
(e) Are X and Y independent?
(f) Are X and Y uncorrelated?
(g) Find the conditional density $p_{X \mid Y}(x \mid y)$. Is it Gaussian?

Problem 3: The random vector $\mathbf{X}=\left(X_{1} X_{2}\right)^{T}$ is Gaussian with mean vector $\mathbf{m}=(-2,1)^{T}$ and covariance matrix \mathbf{K} given by

$$
\mathbf{K}=\left(\begin{array}{ll}
9 & -2 \\
-2 & 4
\end{array}\right)
$$

(a) Let $Y_{1}=X_{1}+2 X_{2}, Y_{2}=-X_{1}+X_{2}$. Find $\operatorname{cov}\left(Y_{1}, Y_{2}\right)$.
(b) Write down the joint density of Y_{1} and Y_{2}.
(c) Express the probability $P\left[Y_{1}>2 Y_{2}+1\right]$ in terms of the Q function.

Problems 4-6: Problems 3.1, 3.3, 3.5

