
UCSB Fall 2009

ECE 235: Problem Set 6 (and recap of random processes through linear
systems)

Assigned: Wednesday, November 25
Due: Thursday, December 3 (by noon, in course homework box)
Reading: Chapters 7 and 8 (you only need to go over the highlights covered in class); also prior
material on Markov processes
Office hours for homework: For next week, I will hold office hours Wednesday December 2 (10-noon)
instead of on Monday;
Final exam and review:The final exam is on Friday, December 11, 4-7 pm in the regular classroom;
I will hold special office hours for the final exam on Friday, December 4, 9-11 am.

Random processes through linear systems

Suppose that a random process X is the input to a linear time-invariant (LTI) system with impulse
response h. Let Y denote the random process at the output of the system. That is,

Y (t) = (X ∗ h)(t) =

∫ ∞

−∞
X(s)h(t − s) ds

Fact: If X is Gaussian, then X and Y are jointly Gaussian random processes.

Fact: If X is WSS, then X and Y are jointly WSS. The mean function of Y is a constant, given by

µY = µX

∫

h(t)dt

The crosscorrelation function (and cross-spectrum) is given by

RY X(τ) = (RX ∗ h)(τ)
SY X(f) = SX(f)H(f)

The autocorrelation function is given by

RY (τ) = (RY X ∗ hmf )(τ)
SY (f) = SY X(f)H∗(f) = SX(f)|H(f)|2

where hmf (t) = h(−t).

Discrete Time Random Processes

Most of the standard results we know apply to both discrete and continuous time processes. However,
we need some additional notation to talk about discrete time random processes through discrete time
linear systems. Discrete time random processes are important because these are what we deal with
when doing discrete time signal processing in communication transmitters and receivers. Moreover,
while a communication system may involve continuous time signals, computer simulation of the system
must inevitably be done in discrete time.

z-transform: The z-transform of a discrete time signal s = {s(n)} is given by

S(z) =

∞
∑

n=−∞

s(n)z−n

The operator z−1 corresponds to a unit delay. We allow the variable z to take complex values. We
are often most interested in z = ej2πf (on the unit circle), at which point the z-transform reduces to a
discrete time Fourier transform (see below).



Remark: Given the z-transform of S(z) expressed as a power series in z, you can read off s(n) as the
coefficient multiplying z−n.

Discrete Time Fourier transform (DTFT): The DTFT of a discrete time signal s is its z-transform
evaluated at z = ej2πf ; i.e., it is given by

S(ej2πf ) = S(z)|z=ej2πf =
∞
∑

n=−∞

s(n)e−j2πfn

It suffices to consider f ∈ [0, 1], since S(ej2πf ) is periodic with period 1.

Convolution: If s3 = s1 ∗ s2 is the convolution of two discrete time signals, then S3(z) = S1(z)S2(z).

Discrete time random processes through discrete time linear systems

Let X = {X(n)}, a discrete time random process, be the input to a discrete time linear time invariant
system with impulse response h = {h(n)}, and let Y = {Y (n)} denote the system output.

As usual, let hmf (n) = h(−n) denote the impulse response for the matched filter for h.

Exercise: Show that Hmf (z) = H(z−1) (assuming h is a real-valued impulse response). Infer that

Hmf (ej2πf ) = H∗(ej2πf ).

Fact: If X is WSS, then X and Y are jointly WSS with

RY X(k) = (RX ∗ h)(k)

RY (k) = (RX ∗ h ∗ hmf )(k)

Power Spectral Density:

For a WSS discrete time random process X, the PSD is defined as the DTFT of the autocorrelation
function. However, it is often convenient to also consider the z-transform of the autocorrelation func-
tion. As before, we use a unified notation for the z-transform and DTFT, and define the PSD as follows:

SX(z) =
∑∞

n=−∞ RX(n)z−n

SX(ej2πf ) =
∑∞

n=−∞ RX(n)e−j2πfn

Similarly, for X, Y , jointly WSS, the cross-spectral density SXY is defined as the z-transform or DTFT
of the crosscorrelation function RXY .

Fact: If X is WSS, and Y = h ∗X (assume h and X real-valued), then X and Y are jointly WSS with

SY X(z) = H(z)SX(z) SY X(ej2πf ) = H(ej2πf )SX(ej2πf )
SY (z) = H(z)H(z−1)SX(z) SY (ej2πf ) = |H(ej2πf )|2SX(ej2πf )

Problems

Practice problems (do not turn in): 7.10, 7.14, 7.18, 8.4, 8.6,

Problems 1-3: Problems 7.9, 7.13, 8.1

Problem 4: Let X denote a stationary Gaussian random process with zero mean and autocorrelation
function RX(τ) = e−|τ |.
(a) True or False: X is a Markov process.
(b) Find the PSD SX(f).
(c) Find (numerically) the 99% power containment bandwidth B of X, which is defined by the equality

∫ B

−B

SX(f)df = 0.99

∫

−∞
∞SX(f)df

(d) Find the MMSE estimate of X(t) given X(0) and the error variance.
(e) Define Yt = X2

t (i.e., Y is obtained by passing X through a squarer).



True or False: Y is a stationary random process.
True or False: Y is a Gaussian random process.
(f) Find the autocorrelation function of Y .
Hint: E[X2(t)X2(s)] = E

[

X2(t)E[X2(s)|X(t)]
]

.

Problem 5: Let Z denote filtered WGN with PSD SZ(f) = I[−2,2](f).
(a) Find and sketch RZ(τ).

Let Xt = 1
10

∫ t

t−10 Ztdt denote a windowed average of Z.

(b) Is X WSS? Is X Gaussian?
(c) Find and plot the PSD of X.
Let Y denote the output when Z is passed through the RC-type lowpass filter H(f) = 1

1+j2πf
.

(d) Find the power of Y .

Problem 6: Consider a discrete time autoregressive, moving average (ARMA) process X defined by

Xn =
2

3
Xn−1 +

1

2
Xn−2 + Un + Un−1

where {Uk} are i.i.d. N(0, 1) random variables.
(a) Find the PSD SX(z).
(b) Find the autocorrelation function RX(k, n) = E[XkXn].
(c) Find and list some applications of ARMA models (e.g., a quick web search should suffice).
Remark: ARMA models are an important tool for modeling memory, and can be put in state space
form: in the preceding example, the state would be Z(n) = (Xn,Xn−1,Xn−2)

T .


