ECE 238 Advanced Control Design Laboratory Fall 2011

Homework 2 (due 5pm Oct.14, in dropbox outside 3120A HFH)

2.1 Non-collocated Partial Feedback Linearization (PFL) control for the acrobot. In class, we
looked at MATLAB simulation results for collocated PFL control of the acrobot (Figure 1),
as outlined in Spong [2]. Download two m-files from the course homework website: ac-
robot__collocated_linearization.m, which solves the equations of motion (EOMs) for the
system with collocated PFL control, and acrobot__animate.m, which will allow you to ani-
mate the motion. You can then run a simulation using the following MATLAB commands:

X0 = [-pi/2+.1;0;0;0]; % set an initial condition

[t,y] = ode45(®@acrobot__collocated _linearization,[0 20],X0); % to simulate
figure(1)

acrobot_animate(t,y) % to animate

a) Modify acrobot__collocated _linearization.m to implement non-collocated PFL control, as
outlined in [2]. (It is probably best to begin by copying this m-file to a new file called ac-
robot_noncollocated__linearization.m, so you have the old code to look at if you need to
debug anything as you edit. In addition to [2], you may wish to reference the PFL class notes,
handed out in class and also available for download from the class handouts website.)

(i) Include a print-out of your code in your homework.
(ii) Also include of a plot of the states over time, using X0 as given above.

B

Figure 1: The acrobot (image taken from [2, 1]; torque input 7 at elbow not shown).
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2.2 Underpowered actuators. The torque required to achieve PFL control was not an issue ad-

a)

b)

dressed in [2] nor in class so far. Separate from the issue of being “underactuated” (where we
cannot independently control every degree of freedom), the system dynamics may be notice-
ably “underpowered”. Motors, for example, generally provide much lower torque and higher
velocity than desired (which is why they are often geared down). However, gearing down a
motor changes the actuator dynamics, making it challenging (if not impossible) to provide a
pure “torque” output. So, we wish to use either a “direct drive” motor or very low transmission
ratio (e.g., a belt drive increasing torque by a factor of 2-3 or so). All of which is to say: it is
important to know whether our beautiful, theoretical control strategy can be implemented with
real hardware!

Run an unaltered version of the m-file acrobot_collocated _linearization.m you downloaded
in Problem 3.1 using the commands given below:

X0 = [-pi/2+.1;0;0;0]; % set an initial condition
[t,y] = ode45(@acrobot__collocated _linearization,[0 20],X0); % to simulate
tau = 0*t; % pre-allocate
for n=1:length(t)
[dX,tau(n)] = acrobot__collocated_linearization(t(n),y(n,:));
end
figure(2); subplot(211); plot(t,tau); title(’Collocated PFL’),
xlabel('Time (8)’); ylabel("Torque (Nm)’)

(i) What is the peak torque magnitude (positive or negative) required in a 10-second simulation?

in a 20-second simulation?

(ii) Set a (generous) torque limit of 10 Nm by changing line 47 to the following:

torque_limit = 10; % [Nm] limit in torque magnitude

Animate the results. Does the first link of the acrobot still swing past vertical? How has the
overall trajectory in state space changed (if at all) due to the torque limit? Explain (qualitatively)
why or why not.

The goal of this entire problem is primarily to get you to think about the difference in the
collocated and non-collocated control strategies.

Repeat this for your non-collocated m-file, plotting the results (with torque_limit=1e12,
which is effectively no limit) on the lower half of the same figure:

X0 = [-pi/2+.1;0;0;0]; % set an initial condition
[t,y] = ode45(®@acrobot__noncollocated _linearization,[0 20],X0); % to simulate
tau = 0*t; % pre-allocate
for n=1:length(t)
[dX,tau(n)] = acrobot_noncollocated _linearization(t(n),y(n,:));
end
figure(2); subplot(212); plot(t,tau); title("Non-collocated PFL’);
xlabel("Time (s)’); ylabel(’Torque (Nm)’)
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(i) What is the peak torque in a 20-second simulation? (Use K, = 50 and K, = 5.)

(ii) Set a torque limit of 20 Nm in your non-collocated control code.

Animate the results. Does the first link of the acrobot still stabilize about a vertical position?
Describe the difference between the animations with and without the torque limit.

(iii) Now, adjust the torque limit (up or down) until the system is “just barely” capable of stabi-
lizing the first link in a near-vertical position. (The second link will continue to move in some
way to provide this stabilization. These motions of the second link are, by the way, the “zero
dynamics” of the system.) What is the smallest value for torque__limit that can still stabilize
the first link near vertical? (Please only calculate this value to within 5 Nm of accuracy!)

¢) Again working with your non-collocated control code, change the desired final position from
90° (7/2) to 80° (807 /180 radians).
(i) What is the magnitude of the peak torque for a 20-second simulation (K, = 50, Ky = 5)?
(ii) How and why are the zero dynamics (second link motion) different than they were when the
desired angle was 7/2? (And why is the required torque so much higher now?)

2.3 Zero dynamics for collocated acrobot. As mentioned in class, the use of the arctan function
in Equation (53) (as shown in Figure 4) in [2] is rather arbitrary. In fact, this particular choice
results in zero dynamics result a third-order equation of motion for ¢;, as shown in Equation
(54). In Figure 2, below, is an alternative function. For |¢;| < 1 (rad/s), ¢§ = (7/3) sin (¢,7/2).
For |¢| > 1 (rad/s), ¢4 = (7/3) sgn (¢y).
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Figure 2: An alternative smooth function for ¢2(q;).
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a)

b)

24

b)

¢)

Modify acrobot__collocated_linearization.m to use the function shown in Figure 2, instead
of the arctan function from [2]. Using the same initial condition, X0, from Problem 2.1, simulate
30 seconds of the dynamics from the original collocated controller (downloaded from the web)
and from your newly modified code. Produce a phase plot of ¢; vs ¢; for each set of data. (These
plots should look similar to Figure 5 in [2].)

Assume that at steady state, ¢o = ¢¢ = 7/3, and ¢, = Go = 0. Write the equation of motion for
the resulting zero dynamics. (i.e., find the new EOM for ¢;, which now replaces Eq. (54) from
[2].)

Zero dynamics of a linear, 4th-order system. In this problem, you are to implement the
feedback strategies outlined for PFL on a system that is already linear, shown below.

) X n X i \ X
=4 ’ > 7
I
/}" — [‘k 2. —
N |
—AMANN m, ‘l,\/\ M /\F";‘
oo o il L

o)

——_1

I
L_A/ :
Mz [ VVVN

"

. . =
7

Figure 3: Fourth-order spring-mass system, for Problem 2.4.

What are the equations of motion for the system shown in Figure 3? (Assume that when z;, =
x1 = w9 = 0, all of the springs are at their neutral, undeflected length. Also assume that x;, is
a control input that we can set directly over time.)
Implement control to drive x; to zero, such that the dynamics of z; over time obey the following
equation:

T+ 2wpty +w? =0
where w = 27 and ¢ = 0.7. Turn in MATLAB code, along with plots of z(t) and z5(t) given
initial conditions z1(0) = 0.5 (m), 22(0) = 0, @1(0) = 0, 2(0) = 0. Use the following values
for parameters: m; = mo = 1 (kg), k1 = ko = k3 = 100 (N/m).
What are the zero dynamics for your controller above? (Hint, the dynamics of x; evolve such
that a steady state of z; = ©; = 2; = 0 is approached over time...)
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