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Homework 2 (due 5pm Oct.14, in dropbox outside 3120A HFH)

2.1 Non-collocated Partial Feedback Linearization (PFL) control for the acrobot. In class, we
looked at MATLAB simulation results for collocated PFL control of the acrobot (Figure 1),
as outlined in Spong [2]. Download two m-files from the course homework website: ac-

robot_collocated_linearization.m, which solves the equations of motion (EOMs) for the
system with collocated PFL control, and acrobot_animate.m, which will allow you to ani-
mate the motion. You can then run a simulation using the following MATLAB commands:

X0 = [-pi/2+.1;0;0;0]; % set an initial condition

[t,y] = ode45(@acrobot_collocated_linearization,[0 20],X0); % to simulate

�gure(1)

acrobot_animate(t,y) % to animate

a) Modify acrobot_collocated_linearization.m to implement non-collocated PFL control, as
outlined in [2]. (It is probably best to begin by copying this m-file to a new file called ac-

robot_noncollocated_linearization.m, so you have the old code to look at if you need to
debug anything as you edit. In addition to [2], you may wish to reference the PFL class notes,
handed out in class and also available for download from the class handouts website.)

(i) Include a print-out of your code in your homework.
(ii) Also include of a plot of the states over time, using X0 as given above.

X 

Fig. 1. The Acrobot. 
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$1 = (milci + mzll)gcos(ql) + m21c2gcos(qi + 92) 
$2 = m21c2gcos(q1 + q2). 
The difference between the system (1)-(2) and the standard 

model of a two-link planar robot [23] is, of course, the absence 
of an input torque to the first equation (1). 

There have been a number of previous studies of underactu- 
ated mechanical systems; only a few will be mentioned here. The 
term “Acrobot” was coined at Berkeley, where the first studies 
of its controllability properties were performed by Murray and 
Hauser [14]. More recently, Berkemeier and Fearing [3] have 
investigated the application of nonlinear control to achieve slid- 
ing and hopping gaits of an Acrobot that has its first link free, as 
opposed to this paper in which the first link is pinned. 

The first experimental results for the Acrobot were produced 
by Bortoff [5] in his Ph.D. thesis. The technique of pseudolineari- 
zation was used to design both observers and controllers to 
balance the Acrobot along its (unstable) equilibrium manifold of 
balancing configurations. The so-called Rolling Acrobot, which 
is similar to the mechanism of Berkemeier and Fearing, was also 
studied in this thesis (see also [4]). 

In [ 171 a similar mechanism was designed and built to inves- 
tigate so-called brachiation motions. Excellent experimental re- 
sults were achieved using control algorithms quite different from 
the type considered here. The control of other gymnast-type 
robots has been considered in [24,25] and [18,20]. The control 
of manipulators with passive joints has been considered in [ 11 

’ 2  

‘ 2  

and [2]. These mechanisms used brakes on the passive joints, 
which introduces a reduced amount of actuation to the passive 
joints that is unavailable for the Acrobot. 

The area of space robotics contains many opportunities for 
the study of underactuated systems. The papers by Papadopoulos 
and Dubowsky [8,15,16], for example, have shown the existence 
of so-called dynamic singularities in the task space control which 
greatly complicates the control problems. 

A number of other related studies can be mentioned, such as 
the control of the more classical inverted pendulum [9]. Most 
previous works have used open loop strategies, sinusoidal exci- 
tation, etc., for swing up control. Anotable exception is the paper 
[26], which discusses controlling the energy of the system; an 
approach related to the one of the algorithms in this paper. 

Partial Feedback Linearization 
It has been shown [14] that the Acrobot dynamics are not 

feedback linearizable with static state feedback and nonlinear 
coordinate transformation. This is typical of a large class of 
underactuated mechanical systems. However, as we will show, 
we may achieve a linear response from either degree of freedom 
by suitable nonlinear feedback. In this section, we derive and 
analyze two distinct nonlinear controllers to achieve two distinct 
systems, which we call CI and Z2, and which represent the 
linearization of the response of link 1 and link 2, respectively. 
We will use these two systems to generate two distinct ap- 
proaches for the swing up control problem. 

The easiest way to see how the partial feedback linearization 
is accomplished is as follows. In equation (1) suppose that we 
solve for either q2 or q 1  and use the resulting expression in the 
second equation (2). In this way the second equation will be a 
feedback linearizable equation involving only q 1  in the first case 
or only q2 in the second case. Upon choosing T to linearize the 
resulting equation (2), we achieve either the system Ci 

41 = V l ,  (4) 

or the system C2 

92 = v2, (6) 

where the terms v1 and v2 are additional (outer loop) control 
inputs to be designed. (This will be clarified below.) We use the 
term non-collocated linearization to describe the system C1 since 
the unactuated joint response is linearized, and we use the term 
collocated linearization to describe the system Z2 in which the 
actuated joint response is linearized. (See [20] for further details.) 

Thus, under conditions that we will state below, the systems 
Ci a&Z2are both feedback equivalents of the Acrobot dynamics. 
Either of these systems, 21 C2, may be used to generate a swing 
up control strategy, as we will show, after first giving the details 
of the derivations of Zi and C2. 
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Figure 1: The acrobot (image taken from [2, 1]; torque input τ at elbow not shown).
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2.2 Underpowered actuators. The torque required to achieve PFL control was not an issue ad-
dressed in [2] nor in class so far. Separate from the issue of being “underactuated” (where we
cannot independently control every degree of freedom), the system dynamics may be notice-
ably “underpowered”. Motors, for example, generally provide much lower torque and higher
velocity than desired (which is why they are often geared down). However, gearing down a
motor changes the actuator dynamics, making it challenging (if not impossible) to provide a
pure “torque” output. So, we wish to use either a “direct drive” motor or very low transmission
ratio (e.g., a belt drive increasing torque by a factor of 2-3 or so). All of which is to say: it is
important to know whether our beautiful, theoretical control strategy can be implemented with
real hardware!

a) Run an unaltered version of the m-file acrobot_collocated_linearization.m you downloaded
in Problem 3.1 using the commands given below:

X0 = [-pi/2+.1;0;0;0]; % set an initial condition

[t,y] = ode45(@acrobot_collocated_linearization,[0 20],X0); % to simulate

tau = 0*t; % pre-allocate

for n=1:length(t)

[dX,tau(n)] = acrobot_collocated_linearization(t(n),y(n,:));

end

�gure(2); subplot(211); plot(t,tau); title('Collocated PFL');

xlabel('Time (s)'); ylabel('Torque (Nm)')

(i) What is the peak torque magnitude (positive or negative) required in a 10-second simulation?
in a 20-second simulation?

(ii) Set a (generous) torque limit of 10 Nm by changing line 47 to the following:

torque_limit = 10; % [Nm] limit in torque magnitude

Animate the results. Does the first link of the acrobot still swing past vertical? How has the
overall trajectory in state space changed (if at all) due to the torque limit? Explain (qualitatively)
why or why not.
The goal of this entire problem is primarily to get you to think about the difference in the
collocated and non-collocated control strategies.

b) Repeat this for your non-collocated m-file, plotting the results (with torque_limit=1e12,
which is effectively no limit) on the lower half of the same figure:

X0 = [-pi/2+.1;0;0;0]; % set an initial condition

[t,y] = ode45(@acrobot_noncollocated_linearization,[0 20],X0); % to simulate

tau = 0*t; % pre-allocate

for n=1:length(t)

[dX,tau(n)] = acrobot_noncollocated_linearization(t(n),y(n,:));

end

�gure(2); subplot(212); plot(t,tau); title('Non-collocated PFL');

xlabel('Time (s)'); ylabel('Torque (Nm)')
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(i) What is the peak torque in a 20-second simulation? (Use Kp = 50 and Kd = 5.)
(ii) Set a torque limit of 20 Nm in your non-collocated control code.

Animate the results. Does the first link of the acrobot still stabilize about a vertical position?
Describe the difference between the animations with and without the torque limit.

(iii) Now, adjust the torque limit (up or down) until the system is “just barely” capable of stabi-
lizing the first link in a near-vertical position. (The second link will continue to move in some
way to provide this stabilization. These motions of the second link are, by the way, the “zero
dynamics” of the system.) What is the smallest value for torque_limit that can still stabilize
the first link near vertical? (Please only calculate this value to within 5 Nm of accuracy!)

c) Again working with your non-collocated control code, change the desired final position from
90◦ (π/2) to 80◦ (80π/180 radians).

(i) What is the magnitude of the peak torque for a 20-second simulation (Kp = 50, Kd = 5)?
(ii) How and why are the zero dynamics (second link motion) different than they were when the

desired angle was π/2? (And why is the required torque so much higher now?)

2.3 Zero dynamics for collocated acrobot. As mentioned in class, the use of the arctan function
in Equation (53) (as shown in Figure 4) in [2] is rather arbitrary. In fact, this particular choice
results in zero dynamics result a third-order equation of motion for q1, as shown in Equation
(54). In Figure 2, below, is an alternative function. For |q̇1| < 1 (rad/s), qd2 = (π/3) sin (q̇1π/2).
For |q̇1| ≥ 1 (rad/s), qd2 = (π/3) sgn (q̇1).
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Figure 2: An alternative smooth function for qd2(q̇1).
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a) Modify acrobot_collocated_linearization.m to use the function shown in Figure 2, instead
of the arctan function from [2]. Using the same initial condition, X0, from Problem 2.1, simulate
30 seconds of the dynamics from the original collocated controller (downloaded from the web)
and from your newly modified code. Produce a phase plot of q̇1 vs q1 for each set of data. (These
plots should look similar to Figure 5 in [2].)

b) Assume that at steady state, q2 = qd2 = π/3, and q̇2 = q̈2 = 0. Write the equation of motion for
the resulting zero dynamics. (i.e., find the new EOM for q1, which now replaces Eq. (54) from
[2].)

2.4 Zero dynamics of a linear, 4th-order system. In this problem, you are to implement the
feedback strategies outlined for PFL on a system that is already linear, shown below.

Figure 3: Fourth-order spring-mass system, for Problem 2.4.

a) What are the equations of motion for the system shown in Figure 3? (Assume that when xin =
x1 = x2 = 0, all of the springs are at their neutral, undeflected length. Also assume that xin is
a control input that we can set directly over time.)

b) Implement control to drive x1 to zero, such that the dynamics of x1 over time obey the following
equation:

ẍ1 + 2ζωnẋ1 + ω2
n = 0

where ω = 2π and ζ = 0.7. Turn in MATLAB code, along with plots of x1(t) and x2(t) given
initial conditions x1(0) = 0.5 (m), x2(0) = 0, ẋ1(0) = 0, ẋ2(0) = 0. Use the following values
for parameters: m1 = m2 = 1 (kg), k1 = k2 = k3 = 100 (N/m).

c) What are the zero dynamics for your controller above? (Hint, the dynamics of x1 evolve such
that a steady state of x1 = ẋ1 = ẍ1 = 0 is approached over time...)
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