ECE 238 Advanced Control Design Laboratory Fall 2011

Homework 3 — State Estimation and Project Proposal
Due Nov. 4, 2011

This homework involves two parts.

1) In part I, you are asked to use MATLAB to simulate a passive pendulum that measures angular position as an
output. This measurement is corrupted by an unknown encoder offset, analogous to the offset our encoders in lab
have (since the encoders are not indexed). Your system will have three states: measured angle (i.e., angle minus
offset), angular velocity, and angle offset (which remains constant). The actual pendulum angle is the sum of the
first and third states. The system will have one output: measured angle (state 1, only).

Parameters:

e Assume the plant has an undamped natural frequency of 10 rad/s, with damping ratio (zeta) of 0.02.
Assume the actual encoder offset is a constant 10 degrees.

e Assume the model has an undamped natural frequency of 6 rad/s, with damping ratio (zeta) of 0.1. Assume
the model of encoder offset is initially O degrees. (This offset is a state you will estimate during
simulation.)

e Use atime step of T=0.001 seconds for simulation. You may use the c2d function in MATLAB to create a
discrete-time state space system for simulation. (See attached pages for a suggested template, if desired...)

e Start with an initial condition of X0 = [20; 0; 10]*(pi/180)

a) Estimate all 3 states over time using a standard observer, L. Set the poles of the observer to be about 5 times faster
than the poles of the model.

b) Now, estimate all 3 states using a Kalman filter. Set Q, R, and PO such that results seem “reasonable”. Note that
only a few lines of code need to be modified to implement b), once you have completed part a).

For each part, a) and b), turn in a one-page figure with the following sub-plots:
e Actual and estimated pendulum angle over time on a single subplot (state 1 plus state 3)
e Actual and estimated angular velocity (state 2)
e Actual and estimated encoder offset (state 3)

2) For problem 2, you should submit a short project proposal (1/2 to 1 page in length). If you have a partner, only
one of the two of you need submit this proposal. (Just list both names on the proposal, of course.) You should

1. specify your intended hardware and control goals,

2. list (briefly) basic steps you plan to use to get to your goal (e.g., system ID, modeling in MATLAB,
designing an estimator or using other signal filtering strategies, control techniques are might try, etc...),

3. identify potential “stumbling block(s)” you think might be particularly challenging (if any), and

4. if there is significant “risk” you can identify in part 3, list a potential “back-up plan”.

Parts 3 and 4 would mostly apply if you trying to control a system no one has ever controlled before (for example),

such as hardware for research. They may also apply if you are trying to do something particularly unique, however,
such as playing ping pong with the acrobat, etc.

(Last revised Oct.27, 2011) Page 1 of 4 HW 3

4 Cleal all 5 TO be sure what you are dolng...
2 format compact % for better readability. _ OC’,"' 25 ’Qo\\
3
4 ¥ ECE 238
5 %
6 % This version include ENCODER DISCRETIZATION
7 %
8 % A number of people have asked about "zeroing out" any
9 % unintended offset in encoder measurement. That is, since
10 % we have no "index" telling us the absolute angle of the
11 % encoder output, the initial angle when we begin real-time
12 % control is the angle the sensor defines as "zero" --
13 % and this MAY be off from "exactly up" or "exactly down"
14 % (or however you want to start the system).
15 %
16 % This modified version of Assignment 4 includes an
17 % additional "state", which is the (unintended) OFFSET ANGLE
18 % that must be added to the encoder to obtain the TRUE ANGLE
19 % (here, i.e., wrt exactly DOWN-pointing, for our passive
20 % pendulum...)
21 %
22 % This "state" is really just a constant, but its value
23 % affects the acceleration of the pendulum (because it
24 % contributes to the TRUE angle of the pendulum).
25 % This offset angle state will be updated only if we include
26 % some assumption about noise (in updating its true value)
27 % in our KALMAN FILTER.)
28 %
29 % Figure 2 plots the actual and estimated offset angle (top)
30 % and the absolute angle (which is measurement plus offset, bottom).
3l
32 % First, we define an ACTUAL plant and a MODEL of the plant.
33 % These SHOULD be the SAME, in general, but we also want to
34 % examine how sensitive our results are if they are DIFFERENT.
35 % In variable names:
36 % "c" stands for "continuous" time. "d" for "discrete".
37 % "p" stands for "plant", and "m" stands for "model".
38
39 % === Define the PLANT and MODEL dynamics:
40 wn_p = 5; % actual (p="plant") natural frequency of pendulum, rad/s
41 zeta p = .01; % damping ratio--> d2x + 2*zeta*wn*dx + wn’2*x
—»42 wn m = ; % modeled (m="model") natural frequency
—3¥43 zeta m = ;
44 & —————- PLANT :
45 % include an "offset error" in (measurement of, via encoder) angle:
—p> 46 Acp = [0 1 ; -wn_p”"2 -2*zeta_p*wn_p : N:; % CONTINUOUS TIME PLANTW
dynamics
47 Bcp = [0; 1; 0];
48 Ccp = [1 0 0];
49 Dcp = [0];
50 sscp = ss(Acp,Bcp,Ccp,Dcp); % CONTINUOUS TIME state-space PLANT system
51 & —————~ MODEL: '
—» 52 Acm = [0 1 ; -wn_m"2 -2*zeta m*wn m ; J % CONTINUOUS TIME MODELW
dynamics
53 Bcm = [0; 1; 0];
54 Ccm = [1 0 0];
55 Dcm = [0];

Page 2 ot 4

Pl

katiebyl
Typewritten Text
Page 2 of 4

Qo oesulll = Ss{Aacm, BCcm, Cem, Dcm) ;% CONTINUOUS TIME state-space MODEL system

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

% Now, simulate PLANT and MODEL as a discrete-time systems:
T = le-3; ¢ Sample time (seconds)

ssdm c2d(sscm, T) ;

ssdp c2d(sscp,T);

Adm = ssdm.A; Bdm = ssdm.B; Cdm
Adp = ssdp.A; Bdp ssdp.B; Cdp

I

ssdm.C; Ddm
ssdp.C; Ddp

ssdm.D; % MODEL
ssdp.D; % PLANT

I
I
Il

% Create an estimator given a "no noise" assumption:

pc = eig(Acm) % poles of plant

pc_dominant = min(abs(pc)) % SLOWEST pole of dynamic system; should be wn
rel _est_speed = 5; % make estimator 2-6x faster than plant dynamics

pe = -rel est_speed*pc_dominant*[1 1 1]1; %

% Below, calculate observer gains (NOT Kalman filter; no noise assumed)

Ld = acker (Adm',Cdm',exp(T*pe))' % match poles, in discrete-time sys

% Initialize state and other variables for simulation loop:

encoder_error = % offset in actual "zero" location...

x0 = [20*pi/180; 0; encoder_error]; % angle and velocity

vyO0 = 0; % start with false estimate of state

ndo = le4; % Number of time steps in simulation

t = [0:ndo-1]*T; % Corresponding time vector

X = 0*x0*t; % pre-allocation (for MATLAB) of entire vector "x"

x(:,1) = x0; ¢ PLUG IN the INITIAL CONDITIONS (position and velocity)
y = 0*t; % actual measurement (pre-allocation)

xe = 0*x; % estimated state (pre-allocation)

ye = y; % estimated measurement (pre-allocation)

u = 0*t; % no torque; you can modify, if desired...

P = zeros(3,3); % initialize covariance matrix

Psave = zeros(9,ndo); % save matrix coefficients over time....

H = Cdm;

% Below, try playing with v and W, vs Q and R...

w = .001;‘ % noise on process (forces and torques)

v = 2*pi/(2”12); % noise on MEASUREMENT. ..

Q = l*w.*E i]; % try changing, so not equal to actual "w"
R = v; t try changing, so not equal to actual "v"

for n=2:ndo

% ACTUAL PLANT DYNAMICS: Use Adp, Bdp, Cdp and Ddp here.
x(:,n) = Adp*x(:,n-1) + Bdp*u(n-1) + [0;randn;0] *w;
y(:,n) = Cdp*x(:,n) + Ddp*u(n) + randn*v*0;

$y(:,n) = round(y(:,n)*(27°12/(2*pi))) * (2*pi/(2°12));

% INTERNAL MODEL OF PLANT: Use Adm, Bdm, Cdm and Ddm below.

% —-- Predictor / Time Update steps:

% (1) Predictor: a priori estimated state (time update)

xe(:,n) = Adm*xe(:,n-1) + Bdm*u (n-1); % + Ld*(y(:,n-1)-ye(:,n-1));
% (2) Predictor: a priori covariance (time update)

P = Adm*P*Adm' + Q;

« ;
Q(1,1) = .99%*Q(1,1); « Can incxesSe Cm\‘go\&\c@ in bfas'SHC,

3,3) = .99*Q(3,3);
Q() Qf oNes ‘*WVﬂ!Z'\‘

% —-- Corrector / Measurement Update steps:
% (3) Corrector: Kalman gain (or, replace with a constant estimator!)

Lkalman = P*Cdm'*inv (Cdm*P*Cdm' + R); % Line below does this calc better,

Page 3 ot 4

katiebyl
Typewritten Text
Page 3 of 4

Y

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

Lkailman = (P*Cam') / (Cdm*P*Cdm' + R); % better for speed AND accuracy

X
9933%%3%23%%% BELOW IS A "TRICK", TO COMPARE ESTIMATORS: $33%%% (fashec ‘han
% CHEAT below: substitute the ESTIMATOR of your choice...

$Luse = Ld;
Luse = Lkalman;

% (4) Corrector: a posteriori estimated state
xe(:,n) = xe(:,n) + Luse*(y(:,n)-Cdm*xe(:,n));

(measurement update)

% (5) Corrector: a posteriori estimated covariance (meas. update)

P = P - Lkalman*Cdm*P;

% I also saved ye and Psave, just to look at them later...

ye(:,n) = Cdm*xe(:,n);

Psave(:,n) = P(:); % keep a running log of P,

end

% Then, plot results:

figure(l); clf

subplot (211)

plot(t,x(1,:)): hold on; grid on

plot(t,xe(l,:),'r--'); xlabel('Time (s)')

plot(t,y,'k.', 'MarkerSize',4)
ylabel ('Angle (rad)')

over time...

IRIARIA
VAKTLAD..

legend('Actual measured state','Estimated measured state','Encoder output')

subplot (212)
plot(t,x(2,:))7 hold on; grid on

plot(t,xe(2,:),'r--'); xlabel('Time (s)')

ylabel ('Angular velocity (rad/s)')

legend ('Actual state', 'Estimated state')

figure(2); clf; subplot(211)
plot(t,x(3,:)); hold on
plot(t,xe(3,:),'r--"'); grid on
xlabel ('Time (s)')

ylabel ('Offset angle (rad)')

legend('Actual state','Estimated state')

subplot (212);
plot(t,x(1,:)+x(3,:),'b-"); hold on
plot(t,xe(l,:)+xe(3,:),'r--"'); grid on
xlabel ('Time (s)"')

ylabel ('Actual Angle (rad)')

legend('Actual state', 'Estimated state')

Page 4 ot 4

A

katiebyl
Typewritten Text
Page 4 of 4

