1. Use "Lab 0" document to build a simulink model to collect encoder data.

2. Use a polynomial fit to estimate velocity for some subsection of interesting data. (Use about 1 sec of data.)
 (HINT: Use both "polyfit" and "polyder".

3. Create a filter in MATLAB to calculate velocity from the encoder data (in MATLAB).

4. Calibrate data - How many radians per encoder ct?
 (a) Distance per encoder ct?

We know the downward-pointing (stable) pendulum w/ no actuation should obey this equation of motion:

(1) \(J \ddot{\theta} + B \dot{\theta} + g m \frac{L}{2} \sin(\theta) = 0 \)

Linearized (for small \(\theta \)), this is close to:

(2) \(J \ddot{\theta} + B \dot{\theta} + g m \frac{L}{2} \dot{\theta} = 0 \)

The left-hand side is the "characteristic equation" giving poles for the pendulum (linearized) dynamic system.
We can rewrite (2) in Laplace notation as:

(3) \[s^2 + 2 \tilde{\omega}_n s + \tilde{\omega}_n^2 = 0 \]
5. From the data below, estimate:
\[w_a = \quad, \quad S_1 = \quad, \quad w_p = \quad \]
\[S_1 = \quad, \quad S_2 = \quad (poles) \]

6. Write the characteristic eqn. and new poles you expect for the inverted configuration of the same pendulum. \[S_1 = \quad \]
\[S_2 = \quad \]

7. Given eqn. 2 & your answers in 5, what would the length of the pendulum be? (Assume a solid rod...)
\[L \approx \quad \]
8. Finally, implement a digital filter within your model to output velocity of the encoder.

- Create a single MATLAB plot that shows both a "polynomial fit" estimate of velocity (as in Problem 2), which should be smooth and have no added time delay, and the output of the "velocity" filter from your Simulink model.

Email some version of this figure (MATLAB "fig" file, PDF, JPG, ...) AND your Simulink "mdl" file, AND your code for the polynomial est. AND a "mat" file with encoder pos & velocity data.

katiebyl@ece.ucsb.edu

(You must also "cc" all group members you worked with, so they have copies & I know who was in what group!!)

9. **Homework** - To be done individually.

 Improve your filter (or other estimation method) for encoder velocity. **BE SURE IT WILL WORK IN REAL TIME**, although you may simulate using MATLAB & emailed encoder (raw) position data at home.
Example of a plot for part 8.

Example of filtered velocity est. vs. polynomial est.

This filter introduces a time delay of ~0.05 sec.