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Abstract 
 

The bouncing ball apparatus exhibits a rich variety of nonlinear dynamical behavior and is one of the 
simplest mechanical systems to produce chaotic behavior. A computer control system is designed for 
output calibration, state determination, system identification and control of the bouncing ball apparatus 
designed by Launch Point Technologies.  Two experimental methods are used to determine the co-
efficient of restitution of the ball, an extremely sensitive parameter of the apparatus.  The first method 
uses data directly from a stable 1-cycle orbit.  The second method is based on the ball map combined with 
data from a stable 1-cycle orbit.  For control purposes, two methods are used to construct linear maps.  
The first map is determined by collecting data directly from the apparatus.  The second map is determined 
from linearization of the ball map.  The maps are used to estimate the domains of attraction to the stable 
1-cycle orbit.  These domains of attraction are used with a chaotic control algorithm to control the ball to 
a stable 1-cycle, from any initial state.  Results are compared and it is found that the linear map obtained 
directly from the data gives the more accurate representation of the domain of attraction.  

1 Introduction 
 
The bouncing ball system consists of a ball bouncing on a plate whose amplitude is fixed and the 
frequency of vibration is controlled.  The plate is driven using a sinusoidal control signal. The bouncing 
ball system exhibits a rich variety of nonlinear dynamical behavior.  It is one of the simplest deterministic 
physical systems to exhibit chaotic motion.  A complete theoretical study of a ball bouncing on a 
vibrating plate has been given in [1]. It has been demonstrated that depending on the initial conditions of 
the ball and the frequency at which the plate is driven, the ball can exhibit chaotic or periodic motion.  For 
example, the ball can undergo an n-cycle periodic motion corresponding to certain frequencies.  A simple 
1-cycle periodic motion is such that the ball bounces to a constant height and after each bounce, the plate 
undergoes one complete cycle before the next bounce. Similarly, the plate could complete n-cycles (the 
value of n depending upon the frequency of vibration of the plate) as the ball bounces to a constant height. 
The bounce heights increase with increasing value of n.  The ball can also bounce to m different heights 
for every n cycles of the plate.  Chaotic motion is observed at certain driving frequencies of the plate.  It 
is shown in [1] that a ball map for the bouncing ball system is a ‘Smale horseshoe’, which is an indicator 
that the motion of the ball is chaotic at certain frequencies.   
 
The bouncing ball is extremely sensitive to the parameters that define the system and these need to be 
determined accurately for modeling and control purposes.  We will demonstrate how stable periodic 
motion can be used to determine the parameters for the experimental system described in section 1.1. A 
high-bounce map can be used to represent the experimental system, when the amplitude of the piston is 
small compared to the height to which the ball bounces, as demonstrated in [2].   We use a high-bounce 
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map to model the experimental system, and using experimental data along with equilibrium solutions to 
the high-bounce map, determine the parameters of the experimental system. These are used to construct a 
mathematical model of the bouncing ball experimental system. 
 
This model is used to construct a linear map of the system about a fixed point corresponding to one of the 
stable 1-cycle periodic frequencies by linearization of the high-bounce map [3].  Alternately, 
experimentally determined parameters along with a data-based approximation method [3, 4] is used to 
construct a linear map of the bouncing ball system about the same fixed point.  These two linear maps are 
used to design controllers to the fixed point. 
 
A chaotic control algorithm [5] is used to drive the ball to the fixed point. Estimates of the domain of 
attraction to the fixed point, essential for this algorithm, are obtained using the two linear maps mentioned 
earlier.   Controllers are designed using these domains of attraction. They drive the ball to the fixed point 
and the effectiveness of using the two linear maps to represent the experimental system is compared using 
data collected from the experiment.   

1.1 Description of the Apparatus 
 

The bouncing ball apparatus (BBA) is an experimental system manufactured by Launch Point 
Technologies [www.launchpt.com] and is illustrated in Figure 1.  This design is based on a laboratory 
system used in previous studies [2, 4]. The plate, in this case is a piston, and is driven by a voice coil type 
actuator having a stroke limited by rubber bumpers. An external command input (typically a sinusoidal 
waveform) is supplied as a reference to control the motion of the piston. A  “super ball”, is confined to 
bounce along a tensioned stainless steel rod. The ball has an internal Teflon bushing to allow it to move 
smoothly along the stainless steel rod and friction does not play a major role with the BBA.  Moreover, 
the rod is lubricated with a light spray lubricant. Friction is not considered to be present while modeling 
the motion of the ball.  
 
The position of the piston is measured using an inductance coil etched on the printed circuit board. The 
inductance of this coil changes as a tapered section of the aluminum piston assembly moves through the 
coil and is detected using a crystal-controlled coherently-demodulated sensing scheme. This is fed back 
through a high-bandwidth PD controller and is used to control the amplitude and frequency of the piston 
according to the externally supplied reference control input.  This internal control system loop for 
maintaining the reference input is depicted in Figure 2.  Ideally, the motion of the piston should be 
unaffected by the impacts with the ball.  The internal controller for the piston approximates this situation 
and the piston, though affected by the impact, recovers quickly.  A ball-bounce sensor consists of a 
microphone in the piston and is in acoustic communication with the ball impact surface via an acoustic 
waveguide.  The channel inlet is on the top of the piston.  The output from the microphone is an analog 
signal and this can be used to compute the time of bounce. The signals from the piston position sensor 
and the microphone are provided as outputs and are used to compute the state of the system.  The 
reference input may be provided using a signal generator (open loop) or a closed-loop computer control 
system (by adding an outer control loop).  Our interest here is in designing an outer control loop in order 
to obtain the desired stable periodic motion. 
 
 
 
 
 
 
 
   



 3

(a)      (b)       
 

                           
Figure 1: (a) Photograph of the bouncing ball apparatus (BBA) (b) A front section drawing of the BBA 
BBA has 5 external connections: 1. Reference (input) 2. Current Command (output) 3. Coil Voltage 
(output)  4. Piston Position (output) 5. Bounce (output) 

 

 
 

Figure 2: Internal control system loop in the BBA 
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1.2 Interfacing the BBA with a computer 
 
The outer control loop consists of a computer control system using a data acquisition card to acquire the 
output signals from the BBA and to supply the control signal as a reference input to the BBA, as shown in 
Figure 3.   
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Outer computer control system loop for BBA 

 
The computer control system computes the state of the system based on the output from BBA.  This is 
then used to generate a control signal to the experimental system based on any chosen control algorithm.  
The output from the piston position sensor is a voltage and this is calibrated in terms of a displacement of 
the piston in meters with respect to the position of the piston when no control input is supplied.  The 
microphone output is an analog signal that shows a spike when a bounce occurs.  A variation of a zero 
crossing technique is used to identify the time of bounce. A pseudo-derivative filter is designed to 
estimate the velocity of the piston from the position signal.  A combination of the piston position and 
velocity is used to compute the phase of the piston at bounce, which is one of the state variables of the 
BBA.  The time between bounces, obtained from the microphone, along with the driving frequency of the 
plate is used to compute the phase change of the plate between bounces and this is the other state variable 
of the BBA.  
 

1.3 Chaotic control algorithm 
 
A number of control algorithms have been proposed to obtain various types of stable periodic motion.  A 
frequency modulation technique has been used in [6] to achieve a 2-period motion or a stable periodic 
motion involving two bounces per period.  The plate is driven at a certain base frequency and the 
instantaneous frequency is modulated to obtain arbitrary controlled bounce heights in 2-period motion. A 
chaotic control algorithm [2,5] has been used to control the ball to a stable 1-cycle periodic orbit starting 
from rest on the plate and has been implemented in simulation in [3]. It has been demonstrated to work on 
a laboratory system [4]. 
 
The chaotic control algorithm may be used to control the ball to any given stable or unstable periodic 
orbit. It uses a linear map to estimate the domain of attraction corresponding to a closed loop control law. 
The plate is initially driven chaotically using an open-loop sinusoidal input. The ball is driven chaotically 
until it enters the domain of attraction, corresponding to the closed-loop control law. The control is then 
switched to the closed-loop control to drive the ball to the fixed point. 
 

BBA 

Computer 
control system 

Outputs Ref Input 

Control 
signal 

Feedback 
signal 
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We will consider here the simplest case of a stable n=1 orbit.  In this case, we only have to switch the 
driving frequency to the frequency corresponding to the stable fixed orbits once the system enters the 
domain of attraction. 

 
The key step in the implementation of this algorithm is to accurately estimate the domain of attraction. 
Two methods are used. In the first case, the linear map from the data-based approximation method is used 
to estimate the domain of attraction.  In the second case, the domain of attraction is estimated using the 
linearized high-bounce map.  In both cases, the ball is controlled to a fixed point corresponding to one of 
the stable 1-cycle periodic frequencies. Data is collected directly from the experiment and the trajectory 
of the ball is plotted. The effectiveness of these maps to represent the actual bouncing ball experimental 
system is compared.   
 

2 Description of computer control system for BBA 
 

A laptop computer is used to acquire and send signals to the bouncing ball experiment.  A Simulink® 
model running on the laptop computer is used to design the outer computer control system loop.  Real-
Time Windows Target® is the real-time kernel used to interface the bouncing ball system with the 
Simulink® model executing on the computer.  This real-time kernel running at CPU ring zero (privileged 
or kernel mode) ensures that the applications run in real-time using the built in PC clock as its primary 
source of time.  The Windows operating system running in the background does not disturb the real-time 
processes because the real-time kernel intercepts the interrupts from the PC clock before it goes to the 
Windows operating system.  It then uses the interrupts to trigger the execution of the compiled Simulink® 
model, thus giving the application the highest priority.   
 
The Simulink® model is first converted into C code and an executable specific to the Real-Time Windows 
Target® by using Real-Time Workshop® and downloaded on to the real-time kernel.  It then runs in this 
environment interacting with the external system and carrying out the various data acquisition and control 
tasks.  The Simulink® model acts like a user-interface allowing the user to change parameters and view 
target signals while the code is executing in the kernel. This feature can be used for online parameter 
tuning and signal monitoring 
 

Figure 4 shows how a Simulink® model running on the computer interacts with the bouncing ball 
experiment via the Real-Time Windows Target® interface.  In our case, the model executes on a Laptop 
PC, which has a National Instruments® DAQCard-6062E I/O board that takes in feedback data from the 
experiment and then sends a control output as an analog voltage to the power amplifier. The power 
amplifier then sends a current input to the voice coil actuator, which in turn is used to position the piston. 
The connector block is used to make the physical wire connections for the Daqcard-6062E.  The outputs 
from the BBA that are fed back to the computer are the current command output from the power 
amplifier, the coil voltage from the voice coil actuator, the piston position as a voltage from the piston 
position sensor and the bounce output as an analog voltage signal from a microphone.  
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Figure 4: Schematic of the laboratory set-up for the bouncing ball experiment 

 
 

 
A number of characteristics of the BBA need to be determined before a control system can be designed.  
These include the linear relation between the reference input voltage and the piston displacement, and the 
phase characteristics of the piston motion with respect to the control voltage signal. Also, the outputs of 
the actuators and the sensors, provided by the BBA have to be calibrated, which are then used in the 
estimation of the state of the system.  All measurements are carried out using the computer control system 
described in the previous section.   
 
 

3.1 Calibration of the piston position sensor 
 

The piston position sensor is calibrated in order to obtain the corresponding displacement of the piston in 
meters.  The position of the piston is to be determined as a displacement from its zero position, 
corresponding to a zero reference input signal.  The piston displacements for various values of the 
reference input voltages are measured using a height gauge.  The displacement of the piston versus the 
piston position sensor output is plotted in Figure 5. The variation is nearly linear and is represented by the 
straight-line equation  
 

oXY 003.0−= ,   
 
whereY is the piston position measured in meters with respect to the zero position and oX is the output 
voltage in (V) 

 

3 Calibration and state determination 
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 Figure 5: Piston position sensor calibration plot 

 

3.2 Linearity and frequency response of piston  
 

A voltage signal is applied a reference input to the BBA to control the piston position.  The internal piston 
control system is kept closed. The piston displacement is observed to be linear with respect to the input 
signal and is represented by the equation  
 

iXY 001.0−= , 
 
where Y is the piston position measured in meters and iX is the reference input voltage in volts.   
 
The frequency response of the piston [7] is obtained by supplying a sinusoidal reference input signal to 
the BBA at different frequencies. The amplitudes of the reference input signal and the output signal from 
the piston position sensor, and the phase difference between the two is measured at these frequencies and 
is plotted in Figure 6.  The dashed line indicates the trend of the piston margin plot. A cutoff frequency of 
110 Hz was obtained as shown by the dotted line.  The phase plot indicates that there is no significant 
difference between the input and output signals for frequencies up to about 50 rad/s which and can be 
ignored for all practical purposes.    
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(a)       (b) 

 

 
Figure 6: frequency response of piston - a) Piston gain characteristics b) Piston phase characteristics  

 

3.3 Bounce detection using microphone, data acquisition system 
 

A ball-bounce sensor is provided in the BBA to detect the collision between the piston and the ball.  This 
uses a microphone to record the sound of collision.  This signal from the microphone is amplified and 
filtered and is then provided as the bounce output of the BBA.  This analog signal is read through the data 
acquisition card into the laptop computer and the computer control system described earlier.  The bounce 
times are extracted by using a modified zero-crossing detection technique.  
 
The bounce output signal for a 1-cycle periodic bounce is shown in Figure 7. (a). The bounce output is an 
analog signal undergoing oscillations about a certain value (due to the piston motion) when no bounce has 
occurred.  When a bounce occurs there is a spike in the oscillation in the negative direction. The bounce 
output has been magnified to show two consecutive pulses in Figure 7. (b). A closer look at the pulse 
shows that the peak pulse at each bounce undergoes an oscillation.  The signal crosses the zero from the 
positive and the negative sides twice. The time of bounce is given by the time at which the signal first 
crosses the zero axis. A direct zero crossing technique based on a falling edge cannot be applied as this 
would lead to triggering of false bounces.  In order to avoid this, some logic has to be incorporated to 
capture just the first falling edge.  
  
It is observed that the second falling edge occurs within 10ms of the first falling edge.  The time between 
consecutive bounces is greater than this (order of 180-300ms). So, a falling edge is considered as a 
bounce only if a falling edge has not occurred within the previous 10ms.  This is implemented by 
recording the zero crossing time at which the falling edge occurs and then comparing this value with the 
zero crossing time of the previous falling edge that has been stored in memory.  If this value is greater 
than 10ms, then a bounce is said to have occurred. The corresponding time of bounce and the piston 
position are recorded.  The time between bounces can be obtained from this. 
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Figure 7: (a) Bounce Output signal recorder for a 1-cycle periodic bounce (b) The Bounce output signal 
magnified to show two consecutive pulses 

 

3.4 Pseudo-derivative filter for velocity estimation 
The velocity of the piston at the time of bounce is needed to compute the phase of the piston, from the 
position signal.  The sign of position and the velocity are used to estimate in which quadrant the phase 
angle lies.  The velocity is estimated from the position signal using a pseudo-derivative filter [8].     
 
The transfer function of the pseudo-derivative filter is given by: 

 

s
s
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)()(   , (0.1)   

          
where   

pdf
1=ε , pdf denotes the pseudo-derivative cut-off frequency. This filter differentiates over 

the frequency range 0 < ω < pdf  (ω is the frequency of the position signal.  pdf was obtained earlier in 
figure 6 as  110 rad/s and represents the maximum frequency of the position signal expected.   
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This filter is converted to discrete form in order to apply it to the discrete time position signal obtained 
into computer through the data acquisitions system.  In order to discretize (0.1), a mapping from the s-
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where T = sampling time for the input position signal. 
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The discretized state space equivalent of (0.1) is written as: 
 
   )()()1( tButAxtx +=+     

)()()( tDutCxty +=  ,    
 

where A = 0.8018, B = 0.9009, C = -21.8018, D = 99.0991 with a T = 0.002s. 
 
 
A Bode plot of the continuous and discrete-time pseudo-derivative filters, shown in Figure 8: (a), 
demonstrates that the discrete time filter is a good approximation of the continuous filter over the 
frequency range 0-200 rad/s.  The implementation of the discrete pseudo-derivative filter within a 
Simulink® model is shown in Figure 8: (b) 
 
(a) 

 
 (b)  

 
 

 
 
 

 

Figure 8: (a) Bode Plots of the continuous and discrete-time pseudo-derivative filters (b) Simulink® block 
implementation of the discrete-time pseudo derivative filter for velocity estimation 

 

4 System identification  
 

The state variables for the BBA are the mass ratio (M) and the co-efficient of restitution of the ball (e).  
The mass ratio is defined as the ratio of the mass of the ball to the mass of the piston.  This is known 
accurately from direct measurement. The co-efficient of restitution is defined as the ratio of the relative 
velocities of ball and piston before and after collision.  This parameter must be determined indirectly.  
 
Two different methods are employed to determine ‘e’ of the ball in the BBA.  The first method uses the 
definition of ‘e’ and the data collected from the BBA by putting the ball into a stable periodic orbit. The 
second method uses the data collected from the BBA and the periodic solutions to the high-bounce map 
used to represent the BBA.  The methods used in the determination of the parameters will give insights 
into the rich nonlinear dynamics of the bouncing ball apparatus. 
 

(0.3) 
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Using the value of ‘e’ from the first method and data obtained experimentally, a linear map of the BBA is 
estimated.  A second linear map for the BBA is constructed using the value of ‘e’ from the second method 
and a direct linearization of the high bounce map.  A comparison of the two linear maps is made.  
 

4.1 Co-efficient of restitution 
 
The co-efficient of restitution (e) is an extremely sensitive parameter of the system.  It is written in terms 
of the known parameters of the system. Let Uj and Vj be the upward velocities of the piston just before 
and after the last bounce, and let Wj and Wj’ be the upward velocities of the piston just before and just 
after. Using the definition of ‘e’,  
 

),( jjjj WUeWV −−=′−   (1) 
 

where the negative sign comes from the reversal of directions of relative velocities. By the Conservation 
of momentum, 

jjjj MVWMUW +′=+ . (2) 
 

Eliminating Wj’ between (1) and (2) gives, 
 

jj

jjj

UW
WMUVM

e
−

−−+
=

)1(
. (4) 

 
Removing the ball from the apparatus and measuring the bounce heights by dropping the ball on a rigid 
surface from a known height cannot be used to determine the value of ‘e’.  This is because the presence of 
the shaft through the ball does not yield consistent results.  The procedure of dropping the ball on the 
stationary rigid surface from an arbitrary height and recording the time between bounces is suggested in 
[9].  This procedure was tried by bouncing the ball on the BBA piston with a constant voltage input to 
hold the piston stationary. The value of ‘e’ was estimated to be 0.713. However, this is not an accurate 
value of ‘e’ for the ball.  The reason for this is that, ideally, the piston should have an infinite mass so that 
its motion is unaffected by the impacts with the ball. The controller for the piston only approximates this 
situation. The piston undergoes small oscillations on impact with the ball and does not act like a perfectly 
rigid surface. The ball map is extremely sensitive to the value of ‘e’ and hence it must be determined by 
some other method. A unique procedure that takes advantage of the dynamics of the systems is proposed 
to determine the value of ‘e’ in the next section.  
  

4.2 Determination of the co-efficient of restitution using experimental data 
 

The definition of ‘e’ and the data collected by putting the ball into a stable 1-cycle periodic motion will be 
used to determine ‘e’.  For stable 1-cycle periodic motion, the ball bounces to a constant height.  In this 
case, the magnitude of the velocities Uj and Vj will be equal with the directions being opposite for every 
bounce,  
 

jj VU −= . (5) 
 

Substituting for Uj from (5) in (4) we get, 
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jj

jj

VW
WVM

e
+

−+
=

)21(
. (6) 

 
The motion of the piston is controlled according to 
 

)sin( jjAy φτω += , (7) 
 

where y is the vertical displacement of the piston.  The amplitude of oscillation of the piston is A, the 
frequency at the time of bounce is jω and τ = t - jt , is the time since the last bounce. The phase angle of 

the piston at the last bounce is given by jφ . 
 

11)( −− +−= jjjjj tt φωφ , (7.1) 
 

 The velocity of the piston is obtained by differentiating (7) to give 
 

)cos()( jjjAtW φτωω += . (8) 
 

Using the equation (5), the time between bounces can be written as 
 

g
V

tt j
jj

2
1 =−+ , (9) 

where  jt is the time at which the jth bounce occurs. The velocity jV can be computed knowing the bounce 

times.   Thus, by computing the value of jW from equation (7) at the jth bounce and the velocity jV from 
equation (8), we can compute the value of the co-efficient of restitution.   
 
In order to obtain the value of e, we first put the ball into a stable 1-cycle periodic motion.  An 
approximate range of frequencies at which stable 1-cycle periodic motion occurs can be determined by 
assuming a reasonable value of e, and then using frequencies close to this. In order to place the ball into a 
periodic orbit the ball has to be dropped from the initial height corresponding to the stable orbit and the 
piston must be in the proper position when the ball hits it.  Since this is not known beforehand, trial and 
error is required.   
 
The piston is supplied with a sinusoidal reference input of amplitude 0.008m at one of the approximate 
frequencies corresponding to 1-cycle periodic motion.  The ball is dropped from an arbitrary height until 
it gets into a 1-cycle periodic orbit.  The bounce times are noted for a number of bounces and these are 
used to compute the time between bounces and the phase of piston at the bounces.   
Table 1 shows the mean value of the value of the phase of the piston at bounces, the time between 
bounces and the e value corresponding to a particular frequency. The data is collected using a Simulink® 
model using a Real-Time Windows Target® interface.  This is repeated for a number of frequencies in 
order to average out the uncertainties in measurement and the slight variation of e at the different 
frequencies.  
 
 
 
 



 13

Frequency (rad/s) 
Phase of piston at 

bounce - jφ  

Time between 
bounces - 

jj tt −+1 (s) 
Co-efficient of 
restitution – e 

27 25.32° 0.232 0.8276 
29 37.16° 0.217 0.8218 
31 44.86° 0.203 0.8185 
33 50.83° 0.190 0.8162 
35 56.23° 0.180 0.8236 

  
Table 1: The e values, and the jφ  and ( jj tt −+1 ) values at different frequencies corresponding 
 to stable 1-cyle periodic orbits 
 
The mean value of e is obtained to be 0.822.  
 

4.3 Linear map from experimental data 
 
We construct a linear map for the BBA about a stable fixed point using data collected directly from the 
experiment. A small perturbation is applied to the frequency of vibration of the piston about one of the 
periodic orbits and data is collected from the apparatus.  A least square analysis is carried out on the data 
to construct a linear map for the apparatus corresponding to a particular frequency as in [3].   
 
The ball is first placed into a stable periodic orbit at a certain frequency input (ω ).  The mean values of 
the state variables of the system, namely, piston phase at bounce jφ  (= φ ) and the phase change between 

the bounces jψ (= ψ ), are obtained from the system.  This is done by taking the average of these values 
for a number of bounces at a particular stable periodic frequency.  The piston is now driven at a slightly 
perturbed frequencyω .  The values of jφ  and jψ  are collected for (n+1) bounces starting from the kth 
bounce.  This is collected for a large number of bounces in order to get an accurate representation of the 
system.  The state variables  
 

φφ −= jx1        

ψψ −= jx2 ,       
 

are constructed by considering jφ  and jψ as perturbations in the nominal values of φ  and ψ , and let 
 

ωω −=u  (9.2)  
  

 
be a perturbation in the frequency from the nominal value ω .  These state variables are computed for 
each bounce and a matrix Y is formulated to obtain 
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where the subscript represents the bounce number.   
 
From this we can formulate the 2n x 1 vector  
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

+

+

+

+

+

+

nk

nk

k

k

k

k

x
x

x
x
x
x

z

2

1

2

1

1
2

1

2

2

1

1

M

,  

 
and the 2n x 6 matrix, 
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We then find the least squares solution to the equation 
 
     zWp =          
 
where  
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22

21

2

12

11

1

a
a
b
a
a
b

p       

 
Once p is determined, we can construct the linear map of the bouncing ball experimental system as  
 

jjj buAxx +=+1 ,     
 
 

where  
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⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211

aa
aa

A  and ⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

b
b

b .     

 
Using ω  = 30 rad/s and a perturbed frequency of ω =30.1 rad/s, we obtain 
 

⎥
⎦

⎤
⎢
⎣

⎡
−
−

=
5201.06194.1
5111.05708.0

A  and ⎥
⎦

⎤
⎢
⎣

⎡
=

2146.0
2199.0

b . 

 
The eigenvalues of the A matrix are  
 

λ = -0.0254±0.7281i  ( 729.0=λ ), 
verifying that ω  is a stable orbit. 

 
 
 

We also estimate the parameters of the BBA, using a high-bounce map [1] to represent it. These 
parameters are then used to compute the parameters of the map.  The high-bounce map is linearized and is 
compared to the data-based linear map obtained directly from data collected from the BBA.  This is used 
to see if the high-bounce ball map is a good representation of the BBA and whether we can design 
controllers for the actual experimental system using this map. 
 
In constructing the high-bounce map, we make a few assumptions so as to obtain a simple representation 
of the bouncing ball system as in [3]. We do not consider the presence of “uncertain” forces that are 
introduced due to the rod used to restrain the motion of the ball along a vertical and the air resistance.  We 
also assume that the amplitude A of the piston is negligible compared with the height of the bounce.   
 
The phase angle for the next bounce can be written using (7.1) as,  

 
jjjjj tt φωφ +−= ++ )( 11 .  (10) 

 
Rewriting (4) for jV we get, 

 jjj W
M
eU

M
eMV ⎟

⎠
⎞

⎜
⎝
⎛

+
+

+⎟
⎠
⎞

⎜
⎝
⎛

+
−

=
1
1

1
,  (11) 

 

Define a1 = ⎟
⎠
⎞

⎜
⎝
⎛

+
−
M

eM
1

 and a2 = ⎟
⎠
⎞

⎜
⎝
⎛

+
+

M
e

1
1

, 

 
and evaluate V at the time of the next bounce, to obtain 

 
11121 +++ += jjj WaUaV .  (12) 

 
Using (8) velocity of the piston for the next bounce can be written as, 
 
    ))(cos( 11 jjjjjj ttAW φωω +−= ++       

5 High-bounce map to represent BBA 
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1cos += jjA φω  (13)  
 

If we make the high-bounce approximation that the amplitude A is negligible compared with the height of 
the bounce, we can obtain explicit equations for the map.  The high-bounce approximation gives  
 

jj VU −=+1       

g
V

tt j
jj

2
1 =−+ , (14)   

 
where g is the acceleration due to gravity.   
 
It follows that (10) and (12) may be written as 
 

j
j

jj g
V

φωφ +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=+

2
1    

1121 cos ++ +−= jjjj AaVaV φω  
 

Multiply the last equation through by g/2ω  to give, 
 

1121 cos
222

++ +−= j
j

jj g
AaV

g
aV

g
φ

ωωωω
, 

 
and define the phase angle change that takes place between the last bounce of the ball and the next as, 
 

g
V j

j

ω
ψ

2
=  

we obtain, 
  

 j
j

jj ψ
ω
ω

φφ +=+1      

      1121 cosˆ ++ +−= jjjj aa φωωψψ    
 
where gAaa /2ˆ 11 = .  We refer to (15) as the high-bounce map.  We will find the fixed-point solutions 
of this high bounce map and use this to estimate the parameters of the BBA. 
 

5.1 Determination of the co-efficient of restitution using periodic solutions to high-bounce map 
 

The periodic solutions to the high-bounce map and the data collected for various 1-cycle periodic motions 
are used to compute the value of ‘e’.  The data needed for the frequency and the phase of the piston at 
bounce, is obtained from a stable 1-cycle periodic motion of the ball.  These parameters are compared to 
the experimentally obtained parameters. This is a good indicator of the effectiveness of the periodic 
solutions of the nonlinear ball map to represent the actual experimental system for periodic motion of the 
ball. 

(15) 
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For the m=1 case, we seek fixed points of the nonlinear ball map given by (15).  The fixed points are 
required to satisfy the conditions jj φφ =+1  and jj ψψ =+1 . In order to obtain the fixed points, the right 
hand side of the first equation of (15) must be evaluated modulo 2π, in which case we obtain  

 
   πψ n2=  

⎥
⎦

⎤
⎢
⎣

⎡ +
= 2

1

2

ˆ
)1(2arccos

ω
πφ
a

an
 

Expanding the values of 2a , 1â  and rewriting (16) in terms of e we get, 
 

 
gA

AMge
πφω

φωπ
+

−+
=

cos
cos)21(

2

2

 (17) 

 
The ‘e’ values in Table 2 are obtained from equation (17). 

 

Frequency (rad/s) 
Phase of piston at 

bounce - jφ  
Co-efficient of 
restitution – e 

27 25.32° 0.8222 
29 37.16° 0.8177 
31 44.86° 0.8133 
33 50.83° 0.8106 
35 56.23° 0.8134 

 
Table 2: The e values obtained by using the solutions to the nonlinear ball map, at different frequencies and 
the corresponding value of the phase of the piston at bounce 

The mean value of e is found to be 0.815, which is the very close to the value of 0.822 found using the 
stable 1-cycle periodic motion along with the definition of e. 
 

5.2 Linear map as determined from high-bounce map  
 
The linearization of the ball map in (15) gives 
 

jubxxx
jjj 1211 1
++=

+
      

jubxaxax
jjj 22221212 1
++=

+
     

 
where 1x , 2x , u represent the perturbations from the nominal values as given in (9.1) and (9.2), and 

21a = φω sinˆ 2
1a− , 22a = φω sinˆ 2

12 aa −− , 
ω
ψ

=1b , φω cosˆ 2
11212 abab +=  

 
Substituting the parameters of the BBA we get, 
 
 

(16) 

(18) 
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⎥
⎦

⎤
⎢
⎣

⎡
−−

=
9446.06457.1
11

A  and ⎥
⎦

⎤
⎢
⎣

⎡
−

=
2821.0

2094.0
b  

 
the eigenvalues of the A matrix are  
 
λ = -0.02772±0.8369i  ( 837.0=λ ) 
 

 
  

 
The parameters of the BBA found using the two methods are summarized in Table 3. 
 
a)             b)  
  

 
 
 
 
 

Table 3: a) ‘e’ found using the definition and data collected from stable 1-cycle periodic motion of the ball     
b) ‘e’ found using experimental data and periodic solutions to high-bounce map.  

 
The parameters of the high bounce map using the two parameters obtained from the two different 
methods are given in Table 4. 
 
a)            b) 
 

 
 

 
Table 4: a) Parameters computed 
using values in Table 3 a).  b) 

Parameters found using values in Table 3 b) 

 
The two sets of values in table 3 and table 4 are almost identical.  Using the information in tables 3 b) and 
4 b) to examine the eigenvalues of the linearized ball map in (18), we obtain information regarding the 
stable periodic motion, which is summarized in the following two tables, Table 5 and Table 6.  Similar 
tables were constructed using the parameters in table 3 a) and table 3 b) and the values were found to be 
almost similar to the ones obtained before.  
 
 
 
 
 
 
 

6  Parameters of the BBA 

Mass of ball  23.3g 
Mass of piston 348g 
Mass ratio - M 0.066954 

e 0.815 
A 0.008m 

 Mass of ball  23.3g 
Mass of piston 348g 
Mass ratio – M 0.066954 

e 0.822 
A 0.008m 

1a  1.7077 

2a  -0.7077 

1â  0.00279 

1a  1.701 

2a  -0.701 

1â  0.00277 
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Table 5: Minimum value of ϖ for which a stable period-1 (m=1) solution exists with the corresponding phase 
angle φ and bounce height 

 
n Frequency (rad/s) Phase (in degrees) Height (m) 

1 25.7 3.15 0.0733 

2 36.4 5.45 0.1461 

3 44.5 2.44 0.2200 

4 51.4 3.16 0.2932 

5 57.5 4.18 0.3661 

6 63.0 4.47 0.4391 

 

Table 6: Maximum value of ϖ for which a stable period-1 (m=1) solution exists with the corresponding phase 
angle φ and bounce height 

 
n Frequency (rad/s) Phase (in degrees) Height (m) 

1 37.3 61.7 0.0348 

2 42.4 42.81 0.1077 

3 48.2 31.62 0.1875 

4 53.9 24.77 0.2666 

5 59.3 20.33 0.3442 

6 64.3 16.85 0.4215 

 
We use this table as a starting point to pick a frequency to produce chaotic motion in our next section 
where we design a chaotic controller to control the ball to stable period-1 orbit starting from rest. From 
the table, it is evident that the following frequencies will not support m=1 periodic motion.   
 

42.4  <ω  <  44.5 
48.2  <ω  <  51.4 
53.9  <ω   < 57.5 

  
We will pick a frequency of 44 rad/s to produce the chaotic motion or a chaotic transient to a periodic 
motion with m>1.  This is used to get into the region of domain of attraction to the specified periodic 
solution. 
 

 
 

From the previous analysis, it is evident that the high-bounce map is a fairly good representation of the 
BBA. A combination of the linear map about the stable orbit and the high-bounce map is needed to 
estimate the domain of attraction to stable 1-cycle periodic orbits. We use the two different linear maps 
obtained earlier to design the controllers to put the ball into the 1-cycle stable periodic orbits starting from 
rest on the plate. The efficiency of the controllers in putting the ball into the domain of attraction and 

7 Controlling the ball to 1-cycle stable periodic orbits
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keeping it there is dependent on the accuracy of the estimate of the domain of attraction. This is 
dependent on the accuracy of the linear maps used to represent the BBA.  Data collected directly from the 
BBA is used to evaluate the efficiency of the controllers.  This is then used to determine as to which of 
the linear maps is a more accurate representation of the BBA.  
 

7.1  Domain of attraction from experimental data 
Chaos is created using open loop control of the piston using a sinusoidal input and this is used to take the 
ball into the domain of attraction [5].  The key feature in this algorithm is to be able to estimate the 
domain of attraction accurately.   
 
Using the linear map obtained from the experimental data, 
 

⎥
⎦

⎤
⎢
⎣

⎡
−
−

=
5201.06194.1
5111.05708.0

A , 

 
with eigenvalues  of λ = -0.0254±0.7281i  ( 729.0=λ ) lying inside the unit circle.  Thus, there must 
exist a 2x2 symmetric positive definite solution for P satisfying the discrete Lyapunov equation 
 

QPPAAT −=− , 
 

where Q is any 2x2 symmetric positive definite matrix such that 
 

PXXV T=  
 
is a Lyapunov function for the bouncing ball system. Choosing IQ = , we obtain 
 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

1593.26077.1
6077.1474.5

P  

 
The control algorithm used is the chaotic control algorithm as described in [5]. The ball is initially driven 
with at a frequency that will produce chaotic motion or a chaotic transient to a periodic motion. This 
frequency was chosen to be 44 rad/s using the periodic frequency table.  When the ball enters the domain 
of attraction to the stable 1-cycle periodic orbit at 30 rad/s, the driving frequency is changed to the stable 
30 rad/s.  The key step is to identify whether the ball has entered the domain of attraction.  This can be 
done by solving an optimization problem of finding the largest max)( VxV < for which V∆ or V&  is 

negative [8].  For two-dimensional systems, this can be simplified by choosing a value of maxV , set up 

differential equations for evaluating around the level curve max)( VxV = and then calculating V&  at every 

integration step.  We repeat this by choosing higher values of maxV  until V& does not remain negative at 

every point. Thus we can pick the highest value for which V& remains negative at every point to represent 
the domain of attraction for the system. Using this procedure, we obtain 
 
for srad /30=ω ,  maxV  = 1.25. 
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The chaotic control algorithm is now used to control the ball to periodic orbits, starting from rest on the 
piston, in the bouncing ball experiment.   Figure 9 shows the data collected directly from the experiment.  
The dotted line indicates the path of the ball and the circle indicates the state of the ball at the time of 
bounce.  The solid elliptical line indicates the boundary of the domain of attraction corresponding to the 
stable orbit for srad /30=ω  , which was estimated using the linear map obtained from experimental 
data. 
 

  
Figure 9: Plot of the ball driven chaotically in state space before being capture within domain of attraction 
estimated using the linear map obtained from experimental data. 

 
Another run of the experiment is carried out to find out if the ball remains in a stable periodic orbit, once 
it is captured within the domain of attraction.  Figure 10 shows the ball after it has been captured within 
the domain of attraction and is undergoing a number of 1-cycle periodic bounces.  It is observed that the 
ball is in a stable motion. Figure 11 shows that the corresponding bounce heights are almost equal and 
constant to the stable bounce height indicated by the dashed line in the figure.  
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Figure 10: Plot of motion of ball within domain of attraction showing number of stable periodic 1-cycle 
bounces 

 
Figure 11: A number of stable 1-cycle periodic bounce heights within the domain of attraction 
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7.2 Domain of attraction from high-bounce map 
 

The linear map obtained by linearization of the high-bounce map is now used to estimate the domain of 
attraction.  Using this we get, 
 

⎥
⎦

⎤
⎢
⎣

⎡
−−

=
9446.06457.1
11

A . 

 
The chaotic frequency of 44 rad/s and the stable 1-cycle periodic frequency of 30 rad/s chosen for the 
earlier approach is found to work here.   Following the same procedure described earlier, the P matrix is 
obtained as  
 

⎥
⎦

⎤
⎢
⎣

⎡
=

7782.50583.5
0583.51787.9

P  

 
and the boundary of the domain of attraction is defined by, 
 

maxV  = 8, for srad /30=ω ,   
 
These parameters are used in the controller for the bouncing ball system.  The ball is started from rest on 
the piston as before and the chaotic control algorithm is used to control the ball to a periodic orbit.  The 
data collected directly from the experiment is plotted in Figure 12.  The solid elliptical region represents 
the domain of attraction estimated using the linearized high-bounce map.  The dashed elliptical region 
indicates the domain of attraction obtained directly from the experimental data. It is seen that the domain 
of attraction estimated using the linear map from the direct experimental method is in a different direction 
and is much smaller than the one estimated from the linearized ball map.   
 
The ball is driven chaotically in state space before being captured within the domain of attraction and 
driven to the fixed point.  It is observed on the plot that the ball enters the domain of attraction indicated 
by the solid line a number of times but is not captured.  The periodic bounces of the ball about the stable 
orbit clearly shows that the linear map from the experimental data gives a better estimate for the domain 
of attraction.   
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Figure 12: Plot of the ball driven chaotically in state space with domain of attraction obtained using linear 
map obtained from the linearization of the high-bounce map 

 
Figure 13: Data collected after the ball had entered the domain of attraction – ball is seen to leave the domain 
of attraction and return to the fixed point a few times.  

 
Figure 13, show that even though the ball enters the domain of attraction, reaches the stable orbit and 
executes a number of stable 1-cycle periodic bounces it has a tendency to leave the domain of attraction.  
The chaotic control will ultimately bring the ball back to the stable orbit but this shows that the estimate 
of the domain of attraction obtained using the linearized high-bounce map is not accurate.   
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The linear map from experimental data gives a more accurate estimate of the domain of attraction and 
hence produces a more effective controller. The controller using the estimate of the domain of attraction 
from the linearized high-bounce map is ineffective but is found to work.  This is because the linearized 
high-bounce map gives a much larger estimate for the domain of attraction and it completely encloses the 
estimate of the domain of attraction obtained from the experimental data based linear map. The ball tends 
to leave the domain of attraction as estimated from the linearize ball map, and is driven chaotically in 
state space according to the chaotic control algorithm.  Ultimately, the controller puts it back into a stable 
orbit and this cycle continues.  The algorithm is robust enough to tolerate inaccuracies in the estimate of 
the domain of attraction, so as to be able to put the ball back into the stable orbit.  But, it desirable to have 
the ball maintain a stable periodic orbit once it enters the domain of attraction as in the case when the 
domain of attraction estimate is obtained from the experimental data based linear map.  
 
These results can be extended to the case of designing a controller to one of the unstable periodic orbits.  
This requires the design of a linear controller to drive the ball to the stable orbit once it enters the domain 
of attraction. Generally, a linear controller is designed using a linear map of the system about the fixed 
point.  This requires an accurate estimate of the linear map of the system about the fixed point. In order to 
obtain an accurate linear map for the highly nonlinear bouncing ball apparatus, the data based 
experimental approach is preferred to the linear map obtained by linearization of the high-bounce map.   
As approximations were made to simplify the high-bounce map, it does not yield an accurate map on 
linearization. 
 
It was found that conventional methods could not be used to determine the value of the coefficient of 
restitution (e), an extremely sensitive parameter of the system.  Using the stable 1-cycle periodic orbits to 
determine the value of ‘e’ provided insights into how the we can take advantage of the system dynamics 
to determine its value accurately.  The accurate determination of ‘e’ also allowed us to predict the 
frequencies at which periodic and chaotic motion occurs for the apparatus, thereby allowing us to use the 
chaotic control algorithm effectively for control of the ball.   
 
It is quite evident that the bouncing ball system from Launch Point Technologies provides an excellent   
experimental tool to study nonlinear dynamics and chaos.  The apparatus can be used to study the variety 
of chaotic or periodic motions possible, depending on the initial conditions of the ball and the piston.  
Improved modeling techniques cane be used to obtain a better model of the system. Various conventional 
control algorithms can be applied to study their effectiveness for this highly nonlinear, yet simple 
mechanical system.   
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