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Control system design is a multistage process involving much more than the design of
the controller itself. Before a controller can be designed, the designer must have sufficient
knowledge of the system to be controlled. The designer begins by collecting information
about the system from all available sources and then representing this information in the
form of a system model. One source of information is the physics governing the system. An
analysis of these physical laws will yield differential or difference equations which describe
the motion of the system in response to certain input signals.

Experimental input/output data taken on the actual system is another common source of
system information. A given input signal is used to drive the system and the system response
to this signal is recorded. This experimental input/output relationship then processed to
determine a transfer function model of the system.

Once a suitable system model is obtained, the controller design can begin. Typically
a first design will be evaluated in computer simulation using a software package such as
MATLAB or Simulink. Performance and stability of the controlled system are evaluated and
design iterations of the controller are performed until a controller is found which meets the
design requirements. Next, the controller is built and its performance is evaluated on the
actual system.

You will notice that the modeling process we have described above is composed of two
parts: the derivation of a physically based analytical model and the use of experimental data

to determine a model. Both phases are important for determining an appropriate model.

*The following software is required to perform this lab: MATLAB and p-ToOLS.



If the models obtained from each process differ greatly, then more work must be done to
determine the source of the difference. The differences may be the caused by an error or over
simplification in the physical analysis of the system, or they may be the result of experimental
data which is insufficient to capture essential system characteristics. Understanding the
source of the differences will yield additional information about the system and can lead to

a more accurate system model.

1 Analytical Model Derivation

In this lab, we will focus on the derivation of a physically based model for the magnetic
bearing system. The modeling will be divided into two parts. In Section 1.1, we will view
the system rotor as a rigid body and derive the corresponding equations of motion. Then
in Section 1.2, we will include the flexible motion of the rotor. Section 1.2 is optional and
is intended for a more advanced course in control system design. We will use MATLAB to
compile the models and to determine certain model characteristics.

The system we wish to control is the Magnetic Moments MBC 500 magnetic bearing
system. A diagram of this system is shown in Figure 1. This system contains a stainless
steel shaft or rotor which can be levitated using eight “horseshoe” electromagnets, four
at each end of the rotor. Hall effect sensors placed just outside of the electromagnets at
each end of the rotor measure the rotor end displacement. This system is a four degree of
freedom system with two degrees of freedom at each end of the rotor. These two degrees of
freedom are translation in the horizontal direction perpendicular to the z axis (x; and x3)
and translation in the vertical direction (y; and yz2). Also included in the MBC 500 package
are four controllers which levitate the bearing when connected in feedback. On the front
panel are four switches for disconnecting each of the controllers so that any one or all of

them can be replaced by an external controller.

1.1 Rigid Body Rotor Analysis and System Modeling

For our first and simplest analysis of the system, we assume that the rotor acts as a rigid
body. A rigid body is one which does not change shape. Therefore, we assume that the rotor

does not bend but rather experiences only translational or rotational motion. In addition, we
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Figure 1: MBC 500 System Configuration

assume that the horizontal and vertical dynamics, i.e. the x and y directions, are uncoupled.
Coupling of these dynamics would occur if the rotor were spinning or if the actuators or
sensors were misaligned; however, we will assume that these effects are small. Our system,
in theory, operates identically in the = and y directions except for the additional constant
force due to gravity acting in the y direction. This constant force is not linear and cannot
be modeled by a linear system model. Therefore, we must neglect gravity in the linear y
direction analysis. Thus, analysis of the & and y directions is identical, and we will focus our
analysis strictly on the horizontal or x direction motion.

For the following analysis, the system configuration and parameters defined in Figure 2
and Table 1 and Table 2 apply.
The nominal or desired rotor position corresponds to x; = 0 and 23 = 0 (or equivalently
Xy =0and Xy =0or g =0and § =0). In this position, the rotor is centered horizontally
with respect to the front and back electromagnets on each end, and its long axis is parallel
to the z axis.

An analysis of the geometry of the rotor will yield the following relationships.
T4 = T9— (5 —1)sind
L
Ty = x09-+ (5 —1[)sind

X1 = l’o—(g—lg)SiHe



‘ Symbol ‘ Description

X The horizontal displacement of the center of mass
of the rotor.

x1 and 23 | The horizontal displacements of the rotor

at left and right bearing positions, respectively

Xy and X3 | The horizontal displacements of the rotor at left and
right Hall-effect sensor positions, respectively

0 The angle that the long axis of the rotor

makes with the z axis

Fi and F, | The forces exerted on the rotor by left

and right bearings, respectively

Table 1: System Variables

‘ Symbol ‘ Description Value

L Total length of the rotor 0.269m

) Distance from each bearing 0.024m
to the end of the rotor

{5 Distance from each Hall-effect sensor 0.0028m
to the end of the rotor

Iy Moment of inertia of the rotor with respect to rotation | 1.5884 x 10~*kg m?
about an axis in the y direction Iy = %mL2

m Mass of the rotor 0.2629kg

Table 2: System Parameters

L
X2 = $0—|—(§—l2)SiH0

Considering the physical limits of our system, we may assume that # is small. This allows
us to make the first order approximations: sinf = 6 and cosf = 1.

We now review Newton’s laws and how they can be used to find the equations of motion
for simple rigid body mechanical systems. For the rotor analysis, we will be using force
and moment balance to help derive the system dynamics. First, we have the force balance
equation:

Z F = ma.
In this equation, [ is the summation of all external forces applied to the system, m is

the rotor mass, and @ is the acceleration of the center of gravity of the system. Next, from
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Figure 2: Rotor Configuration

moment balance we have the relationship
Y M = Ia.

Here ZM is the summation of all moments applied externally to the system, [ is the
rotational moment of inertia of the system about the axis through the center of gravity and
in the direction of rotation, and & is the angular acceleration of the system. In general,

moments and forces are interrelated in the following way:
M=7xF.

This relationship is shown pictorially in Figure 3(a). In this relationship, i is any vector
pointing from the point 0 to the line of application of the force F'. If the vector 7 is chosen
to be perpendicular to the line of application of the force F as shown in Figure 3(b), then
the above equation reduces to

M=rF.

For the examples in Figure 3, the sense of the moment is counter-clockwise.
We will now use force and moment balance to derive the non-linear differential equations

governing the rigid body motion for the bearing rotor shown in Figure 2 above. We assume



Figure 3(a) Figure 3(b)

Figure 3: Force/Moment Relationships

motion in only one plane (i.e. in the x direction only). The equations of motion are:
P = mi’o = F1 + F2
SM = [0 = Fg(g —1[)cos — F1(§ —1)cos b

Exercise 1: Use the small angle # assumption and linearize the equations of motion ob-

tained above.
Exercise 2: A “state-space” system description takes the form:

z = Az + Bu

y = Cx+ Du

where x is the state vector, u is the system input vector and y is the system output
vector. With £} and F, as input variables and X; and X; as output variables, show
that the equations of motion obtained in Exercise 2 can be expressed in state-space

form as the following multiple-input/multiple-output (MIMO) system.

Zo 70010 077 o 0 0
o 000 01/ L + F
o T Jooo||e]|T 0 0 [FQ]
il Loooollil 460 2

- Lo
X1 . 1 _(%_b) 0 J/"o
X2 1o (A-1) o]

- 0




What is the state vector for this system? What are the eigenvalues of the A matrix

corresponding to this system?

Recall that the first order approximation of a continuously differentiable function f(x)

at a point x = « is given by:

flz) = fla) + f/(a)(:zj —a).

Similarly, for a function of two variables, a first order approximation at a point (x,y) = (a,b)
is given by:
~ af af
e = a+ |5 wn) -+ L] -n.

X

Now consider the non-linear relationship which was given in the bearing manual describ-
ing the bearing force on the rotor as a function of rotor displacement and control current.
Given that ¢.ner01, 18 the control current into bearing ¢ in amps, and x; is measured in meters,

we can express the i force as

(icontroli —I' 05)2 . (icontrol,‘ - 05)2
(; — 0.0004)2 (2 + 0.0004)2

F,=k

where & = 2.8 x 107"Nm?/Amp?. Notice that F; = 0 when both x; = 0 and 4conro, = 0.
Thus, the point (2, tcontret;) = (0,0) is an equilibrium point for the function F;. This bearing

non-linearity enters the system as an input or actuator non-linearity.

Exercise 3: Using a linear Taylor series approximation, linearize the bearing non-linearity

with respect to its two variables @; and i.ont,01, about the equilibrium point (2, teontror, ) =

(0,0).

Exercise 4: Now combine the results of Exercise 3 with the expressions for x; and x5 given
in the beginning of this section to express Fj and F; as a linear function of x¢ and 6

and of 2contror, and teontror,, respectively.

Exercise 5: Substitute the expressions for F; and F, which you obtained in Exercise 4 into

the rigid body state space description of the system given in Exercise 2 to obtain a



new state space system model which includes the actuator dynamics. Your new model

should have i.ontro1, and 2eontror, as input variables and should take the following form:

j/’o 1 [ Lo 1
1}.0 o 1;0 icontroll
0 = A 0 + B l icontr’ob ]
i 6]

" 20 ]
X, ] 2o
x| T Y

L 0 ]

where A, B, and (' are your new state space matrices.

Exercise 6: For the state space model obtained in Exercise 5, what are the eigenvalues of
the new system A matrix? Is this system stable or unstable? What are the natural

frequencies of this system?

Now consider the sensor non-linearity. The bearing manual gives the voltage sensed by

the controller, Viepse. , as a function of rotor displacement, X;. The relationship is as follows:
Viense; = 5000X; + (25 x 107)X?
where X, is measured in meters.

Exercise 7: Find a linear approximation to the sensor non-linearity at X; = 0 and rewrite
the system model with Vi.,se, and V.5, as the output variables. Does this change

effect the system eigenvalues?

Finally, there is a current amplifier at the input of our system that regulates the current
into the bearings. The magnetic bearing manual tells us that this amplifier has the following

dynamical characteristic:

d 1 0.25

7, .COTLT’O‘ :_7.conr0' 7%0717’0'-
i Ueontrotd) = =55 Jgmateontrols + 55= g1 Veonvr

The amplifier input is Veontror, and its output 18 teontror;- Veontro, and Veontror, are the voltages

that the controller produces to control the bearing.



Exercise 8 What is the range of frequencies passed by the filtering action of the current

amplifier? Is this a low pass, high pass or band pass filter?

Exercise 9: Add the current amplifier dynamics to the rigid body model obtained in Ex-
ercise 7. Let Vioniror, and Vioniror, be your input variables, Vie,use, and Viense, be your

output variables, and choose
Lo
To

as your state vector.

Exercise 10: Find the eigenvalues of the A matrix of the model obtained in Exercise 9.
Note which eigenvalues correspond to rigid body rotor modes and which correspond to

current amplifier dynamics.

The magnetic bearing manual gives the following nominal transfer function for each of

the on-board controllers:

1.41(1 + 8.9 x 107%s)
(1433 x10~%s)(1 4+ 2.2 x 10-5s)

‘/sense,' — C(S) ‘/sense,'-

‘/control,' -

For our controller design, we will attempt to replace just the controller C,, (s) which maps
Viense; $0 Vieontror,- Thus, the system seen by our controller will be as shown in Figure
4. However, because of our simplifying assumption that the = and y rotor motions are
decoupled, an equivalent system configuration is as shown in Figure 5. In order to obtain
an analytical model for the system to be controlled, we must include the controllers C,, (s),

Cy, (8), and Cy,(s) in feedback as shown in Figure 5.

Exercise 11: Execute the following commands in MATLAB to convert the controller transfer
function C(s) to a state space model with system matrices acont, bcont, ccont, and

dcont.

num = [1.25e — 03, 1.41];
den = [7.2600e — 09, 3.5200e — 04, 1];

[acont, bcont, ccont, dcont| = tf2ss(num, den);
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Now, using the following MATLAB and p-TOOLS commands, add the controller dy-

namics in feedback around the bearing system model as shown in Figure 5. In the

following commands, we assume the system model derived in Example 9 has a, b, c,

and d as its system matrices. The following algorithm creates system matrices abar,

bbar, cbar, and dbar for the system of Figure 5.

cont = pck(acont,bcont, ccont, dcont );

sys = pck(a, b, c,d);

sysbar = starp(sys, cont);

[abar, bbar, cbar, dbar] = unpck(sysbar);

Exercise 12: Assuming that the system model of Exercise 11 is defined in MATLAB with

abar, bbar, cbar, and dbar as its system matrices, use the following MATLAB com-
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mands to plot the Bode diagram of the transfer function from input V.,ur01, to output

‘/sensel .

freq = logspace(1,4,200);

bode(abar, bbar, cbar, dbar, 1, freq);

The system model obtained from Exercise 11 is the rigid body analytical model for the

system we wish to control and will be referred to as the “rigid body model” hereafter.

1.2 Flexible Rotor Analysis and System Modeling

In the above analysis, we have assumed that the rotor is a rigid body. However, during
levitation, the actual rotor does experience bending. There are an infinite number of bending
modes excited in the rotor, however we will only attempt to model the two modes of lowest

frequency. The bending shapes of these modes are described by Figure 6. If we assume that

e e

Figure 6: Bending Modes

no rigid body motion is excited in the system, we can obtain equations of motion describing

the system motion due strictly to the rotor bending [1]. We first define a vector of amplitude

A aq
a =
a2

and relate it to the rotor displacement as follows:

variables

X B —1.93745e - 00 —1.83546¢ + 00
X, o —1.93745e - 00 1.83546¢e + 00
1 B —1.19029¢ + 00 —6.08354e — 01
Z9 o —1.19029¢ + 00  6.08354e — 01
We also define a mass matrix
M= 2.72146e — 01 0
0 2.62297¢ — 01 |’
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a stiffness matrix

4 _ [ 6:05762¢ + 06 0
- 0 4.43630¢ 407 |

and a vector forcing function

p_ —1.19029¢ + 00 —1.19029¢ + 00 Fy
| —6.08354e — 01  6.08354e — 01 Fy |

The following differential equation describes the bending motion of the rotor:
Ma+ Ka=P.

Notice the similarity between the differential equation given above and the standard differ-
ential equation of motion for a spring/mass system. Thus, in bending, the rotor behaves

much like an interconnection of springs and masses.

Exercise 13: From the differential equation above, define an appropriate state vector and
rewrite the rotor bending equations in state space form. As in the rigid body case,
choose F} and [y as your input variables and X; and X, as your output variables.
What are the frequencies of oscillation of the flexible system modes as described in the

equations of motion above?

We have derived the equations of motion for the rotor in rigid body motion alone and in
bending motion alone. Therefore, we may sum both of these responses to obtain the total

displacement of the rotor. (See for example [1].)

Exercise 14: Express the rotor displacement as a sum of the displacements due to rigid
body motion and bending motion. Use this to obtain a combined model which describes
the bearing system response in terms of both rigid and flexible system modes. Let F}

and F5 be your input variables and X; and X, be your output variables.

Exercise 15: Now use the linear approximations to the input and output non-linearities
that you obtained in Exercises 4 and 7 to add the actuator and sensor dynamics to
the combined model derived in Exercise 14. Your input variables should be .ontror,
and Zeontror, and your output variables should be Vi s, and Viense,. Be sure to use
the total displacement (the displacement due to both rigid and bending motion) in the

expression for the bearing forces F; and F3.
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Exercise 16: Add the current amplifier dynamics to the combined model obtained in Ex-
ercise 15. Let Viontror, and Vioniror, be your input variables and Viepse, and Viese, be

your output variables.

Exercise 17: Find the eigenvalues of the A matrix of the system model of Exercise 16.
Relate each of them to the rigid body dynamics, bending dynamics or the current

amplifier.

Exercise 18: Using the MATLAB algorithms of Exercise 11, add the on-board controller in
feedback around the system model obtained in Exercise 16. We will refer to this model

as the “total system model” hereafter.

Exercise 18: Using the MATLAB commands given in Exercise 12, plot the Bode diagram
of the total system model. Compare this Bode diagram to the diagram you obtained
for the rigid body model in Exercise 12. What differences do you see and how do you

account for these? At what frequencies do the primary differences occur?

Exercise 19: Using the Bode diagram obtained in Exercise 18, find the bandwidth of the
total system model. Is it significantly different than the bandwidth of the rigid body

model?
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Version  Date Modifications

2 4/30/96  Lab software requirements list added on p. 1

The phrase “the rotor is centered vertically” is changed to “the rotor is
centered horizontally” on p. 4

Lables modified in Figure 2 on p. 5
Controller transfer function changed on p. 9
Equations for num and den changed on p. 9
Flexible system matrices changed on pp. 11,12
Minor corrections made throughout text
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