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In the following lab we will begin to investigate the design of a controller to stabilize the
magnetic bearing system. We will review the Nyquist Criterion and its application to design
and analysis of unstable systems such as the magnetic bearing. Using this criterion, we will
see how resonant modes can threaten the stability of the closed loop system. Consequently,
we will design and build a notch filter to cancel the effect of the first resonant flexible rotor

mode. This notch filtering is the first phase of our controller design.

3.1 The Nyquist Criterion

The magnetic bearing system can be described by the block diagram shown in Figure 1
where Gi(s) is the magnetic bearing system shown in Figure 2 and C'(s) is the controller we
will design to stabilize it. For such a system configuration, the closed-loop transfer function
can be written

y G(s)
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If we define polynomials n¢, dg, ne and de as follows: G(s) = neg/dg and C(s) = ne/de,

then we can write
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*The equipment needed to perform this lab includes an MBC 500 Magnetic Bearing, Hewlett Packard
3562A Dynamic Signal Analyzer, a Burr-Brown UAF42 14-pin DIP chip, a £12V or £15V power supply and
basic circuit building equipment including a breadboard, assorted potentiometers and fixed value resistors,
circult wire, various coaxial cables and adaptors.



Thus, the zeros of 1 +G(s)C(s) = W% are equal to the poles of the closed-loop transfer

dgdc

function T'(s).
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Figure 1: Magnetic Bearing Closed-loop Configuration
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Figure 2: Magnetic Bearing System

The Nyquist Criterion provides a check on the location of the zeros of 1 + G(s)C(s), or
equivalently the closed-loop system poles, and can therefore be used to determine stability of
the closed-loop system. In performing this check, the open-loop transfer function, G/(s)C(s),
is plotted in the complex plane as s takes values along the imaginary axis, i.e. s = jw where
w varies from —oo to +o00. Such a plot is called a Nyquist plot of G(s)C(s). The Nyquist

Criterion can be stated as follows:

The Nyquist Criterion [or the closed-loop system of Figure 1 to be stable, the Nyquist
plot of G(s)C(s) must encircle the point (—1,07) the same number of times as the
number of right half plane poles of G(s)C(s), and the encirclements, if any, must be

in the counterclockwise direction. [1] [2]



These results may be summarized as follows:

N = the net number of clockwise encirclements of the point (—1,07) by G(s)C(s) with s = jw
as w varies from —oo to +o0o. Counterclockwise encirclements are counted as negative

encirclements.
P = the number of poles of G(s)C(s) that are in the right half of the complex plane.

With these definitions, the Nyquist Criterion can be stated: The closed-loop system is stable
if and only if
N+ P =0.

We know from previous identification experiments that our system ((s) has one unstable
pole; therefore, for any stable C'(s) which stabilizes our system, the Nyquist plot of G(s)C(s)
must encircle the point (—1,05) one time in the counterclockwise direction. This fact gives
us insight into how to choose the magnitude and phase characteristics of C'(s) to achieve
stability. Now let’s consider the effect of the rotor resonant modes on the stability of the
closed-loop system. A Bode plot of the bearing frequency characteristic will show a large
increase in magnitude and wide fluctuation in phase around the resonances. This constrains
our choice of C'(s) because the controller must maintain one encirclement of the point (—1,07)
in the Nyquist plot of G/(s)C(s) despite these wide fluctuations. Thus, we would have more
flexibility in the design of C(s) if the resonances were not in the system. One approach
to controller design of systems with resonances is to “notch out” or approximately cancel
the effect of the resonances by use of a notch filter near the resonant frequencies. In the
controller design to follow, we will attempt to notch the first and largest rotor resonance,

the one near 800 Hz.

3.2 Notch Filter Design

Exercise 1: Repeat Exercises 1-4 of Magnetic Bearing Lab # 2 to obtain a Bode plot on the
dynamic signal analyzer of the bearing system (/(s) except this time plot the response
magnitude in MAG (LOG) instead of MAG (dBm). The sequence of steps required is
included in Tables 1 and 2 below for your convenience. After setting up the signal

analyzer, start the sine sweep by pressing the START key in the CONTROL section



‘ hard key ‘ soft key ‘ value ‘ soft key ‘
MEAS MODE SWEPT SINE
SELECT MEAS | FREQ RESP
SOURCE SOURCE LEVEL | 500 mV
FREQ START FREQ 10 Hz
STOP FREQ 10 kHz

Table 1: Key Sequence for Initiating Swept Sine Mode

‘ hard key ‘ soft key ‘
A
MEAS DISP | FREQ RESP
COORD MAG (LOG)
B
MEAS DISP | FREQ RESP
COORD PHASE
A&B

Table 2: Key Sequence for Bode Plot Display

of the front panel remembering to adjust the “Source” signal amplitude as needed to
prevent the rotor from hitting its physical limits. With the swept sine data displayed,
we will now use the marker capability of the dynamic signal analyzer to determine more
accurately the frequency of the first rotor flexible mode. In the MARKERS section of
the signal analyzer front panel, select the key labeled X. This positions a round dot
on the Bode plot at the first frequency point and indicates to the top left of each plot
the frequency, magnitude and phase at the marked location on the plot. The round
knob in the MARKERS section may now be used to shift the marker to a different
frequency point on the plot. In particular, move the marker to the magnitude peak
corresponding to the first rotor flexible mode. This should be near 800 Hz. Note the

frequency of the peak from the marker information at the top left of the screen.

Now that we have identified the frequency corresponding to the first resonant mode, we

would like to use the signal analyzer to identify this mode more exactly.

Exercise 2: After Exercise 1, the signal analyzer should already be set up for swept sine
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identification of the bearing and display of the Bode plot of the system frequency
response. If it is not, follow the procedure of Exercise 1 above to set up the signal
analyzer. We will now narrow the range of our frequency sweep to focus on the first
resonant mode. We will want to span a frequency range of 100 to 150 Hz centered
at the resonant frequency determined in Exercise 1. We can make this adjustment by
pressing the FREQ key in the MEASUREMENT portion of the front panel. Following
the procedure outlined in Exercise 1, we can select a new start frequency and stop
frequency to achieve the desired frequency range. This new frequency sweep is initiated
by pressing the START key in the CONTROL section of the front panel. When
the measurement has been completed, use the X marker to note the frequency at
which the response peaks. Note that this frequency may be slightly different from
the one determined in Exercise 1 because the trace we have just performed has higher
resolution. This frequency in Hz we will denote as f,, in the following. Also, note the
magnitude at the peak of the resonance response curve. This value we will denote as
Apear- Now select two points f; and f; on either side of the peak and on the portion
of the plot unaffected by the resonance (See Figure 3.) such that

A

o o

or equivalently
2
R

This places f; and f; equidistant from f, when measured on a log scale. Note the

f2

magnitudes at these two points on the plot and call them A; and A;. Now form an
average of these two magnitudes to calculate what the magnitude of the response at f,
would be if the resonance were not in the system. Call this average magnitude Ap,,..

In other words,
Ar+ Ay

Abase — B

With the information obtained in Fxercise 2, we will attempt to estimate the damping of

the first resonant mode. The transfer function for a general resonance pole-pair, assuming
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Figure 3: Approximating Resonance () from Frequency Data

unity gain at DC, can be written in the form:

2
Wy

G SR
RES(S) SQ_I_Sué_n_I_w%

where w, is the resonant frequency in radians per second. If we evaluate this resonance

transfer function at the resonant frequency, w,, we have:

AN

GREs(jwn) = w
J

ol

and
|Gres(jwn)| = Q.

If we express the total bearing system transfer function as a product of the resonance transfer

function and the rest of the system, we find that:
G(Jwn)| = |GrEsT(Jwn)GRrES(jWn )| = |GREST(J00n)|Q-
Exercise 2 gives us w,, as follows: w, = 27 f,. Also, from Exercise 2 we know that
G(jwn)| = Apear

and

|GrEsT(Jwn)| = Apase.
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Therefore, we may approximate () as follows:
Q = Apeak/Abase-

Exercise 3: Using the information obtained from Exercise 2 and the equations above, de-

termine w, and an approximate () for the first resonant mode.

Now that we have specified w,, and ) for the resonance, we may design a notch filter with
the same natural frequency and damping to cancel the effect of the resonance. Therefore,

the same w, and () will describe the notch filter as well as the resonance.

3.3 Building the Notch Filter

For the implementation of the notch filter, we will use a Burr-Brown Universal Active Filter
UAF42 chip (14 pin DIP version) !. A schematic of the notch filter we will build is shown
in Figure 4. This circuit design, using the Burr-Brown UAF42 chip, was chosen to reduce
the sensitivity of the filter response to component variations. When connected in the con-
figuration shown, the UAF42 chip has three filter outputs. Pin 1 corresponds to a low-pass
output, pin 7 is a bandpass output, and pin 13 is a high-pass output. The transfer functions
corresponding to these three outputs are listed in Table 3. The notch filter transfer function

is
A (g2 2
N(s) = N(s® +w,)
s2 4 5‘22—" + w?
and is created by summing the low-pass and high-pass filter outputs. This summing is done
using the auxiliary op amp located on the UAF42 chip in pins 4-6 connected as a unity

gain non-inverting summer. In the UAF42 filter configuration shown in Figure 1, we have

App = Agp; therefore, we also have
An = Arp = Agp.

At this point in the design process, we will not attempt to design the gain of the notch filter.
The filter will be incorporated into the overall controller and the gain will be fixed at that

!To order a Burr-Brown Integrated Circuits Data Book which describes in more detail the use and
specifications of the UAF42 chip, you may write to: Burr-Brown Corporation, PO Box 11400, Tucson, AZ
85734 or call 1-800-548-6132.



‘ Pin Number ‘ Filter Type ‘

Transfer Function

Appwy
1 low-pass Tt
App(wn/Q)s
7 bandpass FEE
ioh- __Apps®
13 high-pass et

Table 3: UAF42 Filter Options

HP Out BP Out LP Out
0o o) Rup o)
RE1 Re2 50kQ R p
13 7 14 150kQ
R, UAF42
50kQ
R, Cy Co
N [ —F—
50kQ 1000pF 1000pF
FILTER S0KO
INPUT  Rg 5 l A i )
o——QM, ' > +
é’ i
‘ Ro 50kQ
J__ Ju 5 Ry, 6
50kQ
RN,y § 50kQ
J_ <)
= NOTCH Out

Figure 4: Notch Filter Schematic Diagram

stage. Because of the way in which the UAF42 chips implement the notch, for most values of

Q) it will have a DC magnitude near one. The w, and () for all of the filters are determined

by choice of the resistances Rpy, Rpe, Rg and Rg. This relationship is described by the

following equations:

1018
Rri R

Rg—I-RQ

1
5+@5x1¢)

ReRg

RFI 1/2
()

From these equations, we see that we have four parameters to tune and two equations



to satisfy. Thus, we have extra flexibility in choosing these parameters. We will use this
flexibility to make our resistances fall within the range 1k ohm to 1M ohm 2. The first
equation above shows us that w, is determined by the values of Rpy and Rp,. However,
from the second equation we see that the value of () is also affected by choice of Ry and
Rpo. We will select the values of Rpy and Rpy in two stages. First, we will use the second
equation to select the ratio g—?; so that the values of Rg and Rg may fall within the desired
range of 1k ohm to 1M ohm. Then we will fix the values of Rpy and Rp9 to give the correct
w, based on the first equation. Once Rp; and Rpy are fixed, we can use the second equation

to choose R and Ry.

Exercise 4: Assume R; = Rg and set them equal to some nominal resistance value (e.g.

R = Rg = 50k ohm) in the @) equation above. Given the value of () determined in

Rpy

Exercise 3, solve for the ratio n 2 R

Exercise 5: Now substitute the relationship Rpy = nRpq into the equation for w? given
above. Using this new equation and the value for w, from Exercise 3, solve for Rp,.
Solve Rpy = nRpy to find Rpy. Check to see that both values fall within the range
1k ohm to 1M ohm . If they do not, then repeat Exercises 4 and 5 with the value of

Re = Rg adjusted appropriately.

Exercise 6: Build the notch circuit shown in the schematic of Figure 4 using the resistor
values calculated in Exercises 4 and 5. Use potentiometers for Rpy, Rp2, Rg, and
Rg. Be sure to physically label each of the potentiometers so that they are easily
distinguishable for tuning purposes. Also, it is important to keep your wiring neat and
simple. This may seem to take more time in the circuit building phase, but it will save

even more time in the debugging phase.

Let us now consider the effect of w, on two of the filter responses available from the
UAF42 chip. In particular, let us focus on the bandpass filter and notch filter responses.

The transfer function of a bandpass filter is given as

ABp(wn/Q)S

Typ(s) = B[]S
BP(S) SQ_I_Sué_n_I_w%

2We choose this range because resistances below 1k ohm will cause excessive output leveling on the op
amps; resistances above 1M ohm, when multiplied by offset currents of the op amp give large offset voltages.



For now we will assume that Agp = 1. This gives the magnitude of the bandpass response

at frequency w as follows:

Tep(jw)| = = —.
Yoz —wt) + 52

Notice that at w = w,, |Tsp(jw)| = 1. Notice also that the maximum value of |Tgp(jw)|
over all frequencies is 1. Thus, the magnitude of the bandpass response achieves its peak
value at w = w,,. Now let us consider the notch filter response. The notch transfer function

is as follows:
AN(32 + wz)
T = "
N(S) 52 ‘|’3u22_n‘|’w7%

Again, let us consider the case Ay = 1. The magnitude of the notch filter response can be

written

TN (jw)| = - —.
Yot — w2+ 5
Thus, at w = w, we have |Ty(jw)| = 0. In other words, the notch filter completely rejects

signals of frequency w,,. Figure 5 shows Bode diagrams of band-pass and notch filter responses

for the case of w, =1 and Q) = 1.
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Figure 5: Band-Pass and Notch Filter Bode Diagrams

Exercise 7: We will now use the signal analyzer to tune w,, by identifying the UAF42 band-

pass filter response. As explained earlier, the resistances Rp; and Rpy determine the
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value of w, for all of the filter responses of the UAF42 chip. Therefore, the w,, for the
bandpass filter is the same as the w, for the notch filter. Connect the signal analyzer
SOURCE signal to the FILTER INPUT as well as to CHANNEL 1 of the signal an-
alyzer. The UAF42 bandpass filter output, pin 7 of the UAF42, should be connected
to CHANNEL 2 of the signal analyzer. Follow the procedure outlined in Exercise 1
for setting up the signal analyzer for swept sine analysis if it has not already been set
up. Use the same frequency range that you used in Exercise 2 to focus on the peak of
the bandpass filter response. Perform the swept sine identification. In the MARKERS
section of the signal analyzer front panel press the SPCL MARKER key followed by
the MRKR — PEAK soft key to place the marker at the peak of the bandpass filter
response. The equation for the frequency in Hz at this point is f, = w,/(27). Using
the w? equation given above, we can now adjust Rp; and Ry appropriately to achieve
our desired w,. Repeat the swept sine identification and the adjusting of Rry and Ry

until the UAF42 filter w,, is very close to the desired value.

Exercise 8: Use the new Rp; and Rpy values determined in Exercise 7 and the ) equation
above to determine a new value for Rg = Fg. Adjust the Rg and Rg potentiometers

in the notch filter circuit to make them equal to this new value.

In considering the role of the parameter () on the various filter responses, let us look at

the transfer function denominator common to all of the filters,

Wy

D(s)=s —I-SQ

2
+ w;.

The roots of this polynomial are

Wn W%
e @—4w3_—wni .
s = 5 _2Q Wh 107 .

Let us call these two roots p; and py. Notice that if () < %, the roots are real; however, if () >

%, the roots are complex conjugate with real parts equal to —w, /(2Q)). Thus, as () becomes
large, the real part of the complex conjugate roots becomes very small. The denominator

can be rewritten as D(s) = (s — p1)(s — p2) and the magnitude of the denominator as
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|D(s)| = |s — p1l||s — p2|- Now consider the magnitude of the vector jw — p; as w varies
from 0 to oo. As shown in Figure 6, the magnitude of this vector becomes very small as w
approaches w,, and the smaller the real part of the root p;, the faster the magnitude changes
as the frequency varies near w,. In particular, since D(s) is the denominator for both the
bandpass and notch filters, for very large () values, the bandpass filter has a sharp peak at
w, and the notch filter has a steep notch at w, in their magnitude Bode plots. Thus, the

size of () determines the steepness of the response at w, of the notch filter we are designing.

p: _ o, /7) Imaginary
1 2Q
®
p= -_n '\/
2 2Q 1 )
3 o1 =
X T 10, 4Q2
jo-p o
I —
0,0
Real w, (0,0)
o
1
X 1 (1) 1 - —
p 1%n 4Q2

Figure 6: The Relationship Between Magnitude and () Value

Similar to w,, the resistances R and Rg as well as Rpy and Rpy determine a () value that
holds for all of the UAF42 filter responses. Since Ry and Rpy were fixed in the determination
of w,, we will adjust the resistances R and Fg to tune the @) value. From our swept sine
analysis, we were able to identify the w, of the first resonant mode fairly accurately; however,
unlike the w,, our estimate of the resonance () value was fairly inaccurate. Thus, in our
tuning of ) we will not attempt to match our ) design value, but rather tune () to the

actual system to best notch the resonant mode.

Exercise 9: Repeat the signal analyzer sine sweep performed in Exercise 7 with the updated
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values of Rg and Rg obtained in Exercise 8. Choose ws to be some frequency (in
rad/sec) in the passband of the bandpass filter other than the resonance frequency
w,. See Figure 7. Now, from the bandpass filter swept sine response, use the signal
analyzer markers to evaluate the magnitude of the bandpass filter response at ws. Now

define M to be the bandpass filter magnitude at ws. In other words,

A WnWw3a
_ BP Q

2. 2 :
s=jws ¢(w% - WS)Q + 523

ABp(wn/Q)S

A
M = 2 w 2
S —I—Sa"—l—wn

Simple algebraic manipulation yields the following relationship:

0 _i\/A%P—M2 Wnws

M w2 —wi

The UAF42 Data Book' gives the equation Agp = 505/ R. Use the above equations
to solve for () from the signal analyzer bandpass filter data. Check to see that this )
value is roughly the designed value chosen in Exercise 3. If the filter @) is significantly
different from the designed value, then check the calculations performed in Exercises 4
and 5. Adjust Rg and Rg as needed to make the filter () approximately equal to the
designed value of (). For simplicity, you may want to keep Rg = Rg.

Magnitude
(log scale)

W5 On
Frequency [rad/sec] (log scale)

Figure 7: Calculation of Filter ) from Frequency Data
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In tuning ) for best notching of the first resonant mode, we will connect the notch filter
so that it is in series with the bearing system as shown in Figure 8. In other words, we
will connect the bearing output OUTy; to the notch circuit FILTER INPUT. We will then
apply our signal analyzer SOURCE signal to input IN;; however, we will consider output
OUTy; to be the input to the series connection for determining its transfer function. Hence,
we will connect OUT;; to the signal analyzer Channel 1 input. Finally, we will connect the
notch filter output, NOTCH Out, to the signal analyzer Channel 2 output. As we discussed
in Magnetic Bearing Lab # 2, this type of identification scheme can be biased by system
noise. However, for interactive tuning of the parameter (), a one step identification scheme

is fastest and accurate enough to provide satisfactory tuning.

To Source To Channel 1
To Channel 2

Current Bearing and _ Hall-Effect
INPUTS ouTPUTS Amplifier Rotor Dynamics sensors  OUTPVTS

FILTER

Ny out X X INPUT NOTCH Out
\(O?, L @) ——» o |— () Notch Filter
O N, out,, O Y, olt O out,,
O N3 @ ouT O X, P(s) o X, O out,,
O N, O\ VT O—' y, o Y, ()om24

LI 1] voop switches On-Board
Controllers

c,®
c,®

C,()

C,(s)

Figure 8: Series Connection of Bearing and Notch Filter

Exercise 10: Connect the notch filter in series with the bearing system as described above
and as shown in Figure 7. Perform a swept sine identification of the bearing/notch
combination using the frequency range chosen in Exercise 2 which focuses on the first
resonant mode. Adjust Rg = Rg about their initial value performing new sine sweeps
of the notched resonance after each adjustment and noting the maximum value of the
resonant peak with each value. Choose the value for B¢ = Rg which gives the best
notching of the resonance. You should expect to achieve roughly an order of magnitude
decrease in the peak magnitude from the unnotched to the notched resonance. Typical
data obtained from the swept sine analysis of the first resonant mode of both the

notched and the unnotched systems are shown in Figure 9.
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First Flexible Mode of G(s)--Notched and Unnotched
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Figure 9: First Resonant Mode of Notched and Unnotched Systems

For comparison purposes, we also include the following plot of swept sine data obtained

from the notch filter used to obtain the notched system response shown in Figure 9. This

data is shown in Figure 10.
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Notch Filter Transfer Function
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Figure 10: Notch Filter Transfer Function
Version  Date Modifications

4 4/24/96  Definition for N modified on p. 2
Statement of Nyquist Criterion changed on p. 3
"clockwise’ changed to 'counterclockwise’ on p. 3
Figure 4 modified to change inverting summer to a non-inverting summer on p. 8
Op amp summer description similarly modified on p. 7
Figure 6 modified for clarity
Plots of typical data added in Figures 9 and 10
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