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Abstract: A new hybrid controller has been ap-
plied for feedback stabilization of a Pendubot, whose
dynamics show second order nonholonomic proper-
ties. Experimental results for di�erent test cases show
that hybrid control outperforms the existing control
algorithm. This successful implementation provides a
novel alternative for the control of under-actuated me-
chanical systems. Many such systems are subject to
second order nonintegrable di�erential constraints.

1 Introduction

A PENDUBOT [1] is a two-link (two-degree-of-
freedom) planar robot, whose �rst link (shoulder) is
actuated and second link (elbow) is not actuated. It
is an under-actuated mechanical system(see Figure 1).
Under-actuated mechanical systems generally have

Figure 1: Picture of the Pendubot

multiple equilibria. For the Pendubot, the position
shown in Figure 1 is an unstable inverted equilibrium,
which is the most diÆcult case for feedback stabiliza-
tion among all the equilibria. The challenge for control
of under-actuated mechanical systems is to use actu-
ated links to control the passive links by utilizing the
nonlinear dynamic coupling between them.
The Pendubot possesses some unique features and

challenges for control research not found in other
under-actuated mechanical systems, such as control of
a cart [2] and control of an Acrobot [3]. The Pendubot
is simple enough to permit complete dynamic analysis

and experimentation, but complex enough for investi-
gating many advanced nonlinear control approaches,
such as optimal control, robust and adaptive control,
intelligent control, and hybrid and switching control.
Speci�cally, the Pendubot exhibits second order

nonholonomic properties, which means the dynam-
ics of the Pendubot are subject to second order non-
integrable di�erential constraints. Control of second
order nonholonomic systems has been one of the most
active research areas in the last few years. The diÆ-
culty is that for a large class of non-holonomic systems,
it is impossible to use smooth feedback to stabilize the
system around an equilibrium even locally. Hybrid
control has been considered as a good choice.
As reported in [4], many theoretical studies have

been performed for control of nonholonomic systems.
However, few results have been implemented. There
is a strong need for the experimental study of control
of nonholonomic systems. A novel hybrid control ap-
proach for feedback stabilization of second order non-
holonomic systems is presented in [5]. In this paper,
the application of the hybrid control approach for feed-
back stabilization of a Pendubot is presented.

2 Dynamic Model and Control

Properties of the Pendubot

2.1 Dynamic Model of the Pendubot

The dynamic model of the Pendubot can be easily de-
rived by using Euler-Lagrange equations [6]. Through
reparameterization, the dynamical parameters of the
Pendubot can be grouped into �ve parameters � =
(�1; �2; �3; �4; �5). Then, we have the following dy-
namic system

M(q)�q + C(q; _q) _q + e(q) = � (1)

M(q) =

�
�1 + �2 + 2�3cos(q2) �2 + �3cos(q2)

�2 + �3cos(q2) �2

�

C(q; _q) =

�
�6 � �3sin(q2) _q2 ��3sin(q2)( _q2 + _q1)
�3sin(q2) _q1 0

�
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e(q) =

�
�4gcos(q1) + �5gcos(q1 + q2)

�5gcos(q1 + q2)

�

� =

�
�1
0

�

where q = [q1; q2]
t is the vector of generalized coordi-

nates (joint variables for robotic manipulator). Here,
q1 represents the control link, and q2 represents the
under-actuated link (see Figure 2). M(q) is the 2� 2
inertia matrix, C(q; _q) _q is the vector of Coriolis and
centripetal torques, e(q) is the gravitational term, and
� is the vector of control torque. The dynamic pa-
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Figure 2: Dynamics of the Pendubot

rameters of the Pendubot are identi�ed as follows [1]:

�1 = 0:0308vs2; �2 = 0:0106vs2

�3 = 0:0095vs2; �4 = 0:2086vs2=m

�5 = 0:0630vs2=m

(2)

These parameters are obtained through reparameter-
ization. There are no direct physical meanings. The
units in the above parameters follow the International
System for Units. The units arise because a �xed am-
pli�er gain of K=1.2 A/v and a motor torque constant
of 0.4006 Nm/A are took into account. Please refer to
the manufacturer's user manual [1] for detail. For the
convenience of future discussion, we call this Model
One.

2.2 Equilibrium Con�guration
An equilibrium con�guration is a particular value of
the state and the control input for which the Pendubot
is at rest, i.e, _q = 0. Examining the equations in (1)
of the Pendubot, the equilibrium points are given by

�4gcos(q1) + �5gcos(q1 + q2) = �10

�5gcos(q1 + q2) = 0

Suppose �10
�4g

� 1, then solving for the equilibrium con-
�guration

q1 = arccos(
�10

�4g
); q2 = n

�

2
� q1; n=1,3,5, ...

which means the Pendubot will balance at a state (q1,
q2, 0, 0), if we apply a constant torque �10. The last
two elements of the state are velocities.
We are interested in the natural equilibria of the

Pendubot when �10 = 0. Examining the above solu-
tions, we have the following four equilibrium con�gu-
rations.

� q1 = �
�
2
, q2 = 0, (both link 1 and link 2 are in

their lower positions).

� q1 = �
�
2
, q2 = �, (link 1 is in its lower position

and link 2 is in its upper position).

� q1 =
�
2
, q2 = 0, (both link 1 and link 2 are in their

upper positions ).

� q1 = �

2
, q2 = �, (link 1 is in its upper position

and link 2 is in its lower position).

Note that only the �rst equilibrium point of the above
four equilibria is stable. The remaining three equilib-
rium points are unstable. An arbitrary small distur-
bance causes at least one of the links to fall, and con-
sequently a large motion is produced. Furthermore,
the third equilibrium con�guration q1 = �

2
, q2 = 0 is

the most diÆcult case for feedback stabilization, since
very small disturbances will cause both links to fall.

2.3 Control Properties of the Pen-

dubot
From equation (1), we see the dynamics of the Pen-
dubot are subject to a second order di�erential con-
straint as follows

(�2 + �3cos(q2))�q1 + �2�q2 + �3sin(q2) _q
2
1

+ �5gcos(q1 + q2) = 0
(3)

The integrability of dynamic constraints is an impor-
tant property for many physical systems. Depending
on the integrability of their dynamic constraints, dy-
namic systems can be classi�ed as either holonomic
or nonholonomic. A large class of under-actuated
mechanical systems are second order nonholonomic
systems. Controllability and stabilizability of under-
actuated mechanical systems are closely related to in-
tegrability property. It is well known that a signif-
icant drift term exists for nonholonomic systems, it
is diÆcult if not impossible to use smooth feedback
to asymptotically stabilize a large class of nonholo-
nomic systems to the equilibrium state. In this case,
non-smooth feedback stabilization must be pursued or
di�erent control objectives must be addressed [4].
In order to check whether a system is holonomic

or nonholonomic, integrability of the di�erential con-
straint needs to be checked. However, many integra-
bility conditions in the literature can not be used for
this purpose. They are either coordinate dependent or
have strong assumptions.
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New integrability conditions using the Frobenius
Theorem in di�erential forms are presented in [5]. The
conditions are coordinate independent and in general
can be applied for any order of di�erential constraint.
The conditions state a second order di�erential con-
straint is integrable if and only if the wedge product
of ! and d!, where ! is the constraint in di�erential
form, is vanishing.
Consider the second order di�erential constraint (3).

After simple transformation, we obtain the following
di�erential forms

! = (�2 + �3cos(q2))d _q1 + �2d _q2

+ [�3sin(q2) _q
2
1 + �5gcos(q1 + q2)]dt

d! = d(�2 + �3cos(q2)) ^ d _q1

+ d[�3sin(q2) _q
2
1 + �5gcos(q1 + q2)] ^ dt

It can be checked that ! ^ d! 6= 0.
We conclude that the Pendubot is a second order

nonholonomic system.
Oriolo and Nakamura [7] showed that the dynamic

constraint of an under-actuated two-link robot is holo-
nomic if the gravity term vanishes and only the second
link is controlled. If the �rst link is actuated, it is a
second order nonholonomic system. For the Pendubot,
not only is the �rst link actuated, but also the gravity
term is non zero. Thus, it is a second order nonholo-
nomic system. This observation is consistent with our
conclusion using new integrability conditions in di�er-
ential forms.

3 Hybrid Control for the Pen-

dubot
In order to feedback stabilize the Pendubot around
the equilibrium q1 = �

2
and q2 = 0 (both links are in

their upper position), we need to move the Pendubot
from its stable downward position (both links in their
lower positions) to an unstable equilibrium manifold
close to the inverted position . The strategy is to use
swing up control �rst to move the Pendubot close to
the equilibrium, then switch to a hybrid control for
feedback stabilization.

3.1 Swing Up Control
Moving the Pendubot from its downward position to
a neighborhood of its equilibrium manifold is called
swing up control. Swing up has been fully studied
in the literature. A good choice for swing up for the
Pendubot is partial feedback linearization [1, 3].
It has been shown that the Pendubot dynamics are

not feedback linearizable with static state feedback
and nonlinear coordinate transformation [3]. However,
we may achieve a linear response from either link, but

not both, by suitable nonlinear partial feedback lin-
earization.
Choose the control

�1 =

�
d11 �

d12d21

d22

�
u+

�
c11 �

d12c21

d22

�
_q1

+

�
c12 �

d12c22

d22

�
_q2 + e1(q)�

d12e2(q)

d22

Then, the system in (1) is partially feedback linearized
and u is an additional (outer loop) control input to be
designed.
Choose the control u as

u = kp(qe1 � q1)� kd _q1 (4)

It can be easily shown that if we choose kp > 0 and
kd > 0 and suppose that the output q1 identically
tracks the equilibrium qe1 = �

2
, then the linearized

subsystem de�nes a globally attractive invariant man-
ifold. The remaining nonlinear subsystem can be de-
�ned as the zero dynamics of the system with respect
to the output q1. The strategy for swing up control
is to excite the zero dynamics suÆciently by the mo-
tion of link 1 so that the pendulum swings close to its
unstable equilibrium manifold.

� For Model One supplied by the manufacturer [1],
choose kp = 50=s2 and kd = 8:8=s.

� For the purpose of robustness comparison, we also
applied our hybrid control to the following model
with varied parameters(called Model Two).

�1 = 0:0260vs2; �2 = 0:0119vs2

�3 = 0:0098vs2; �4 = 0:1673vs2=m

�5 = 0:0643vs2=m

(5)

For Model Two, we choose kp = 53=s2 and kd =
8:62=s for swing up control.

3.2 Feedback Stabilization
Once the Pendubot reaches the unstable equilibrium
manifold, the controller will switch to a hybrid con-
troller for asymptotically stabilizing the system to the
equilibrium state.
A new hybrid control design theorem for feedback

stabilization of a large class of under-actuated mechan-
ical systems has been given in [5]. The hybrid control
contains a continuous-time control part and a discrete-
time control part. The continuous-time control part
depends on continuous-time state information. The
discrete-time control part changes values at every �xed
time. The values are determined by both the previous
discrete-time control part and the state information.
Whenever the discrete-time control part switches to a
new value, the discrete-time control part will always
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keep part of the previous control information. The
hybrid controller design easily calculates matrices to
satisfy the proper conditions.
De�ne the equilibrium point qe = [qe1; qe2]

t, where
qe1 is the actuated part and qe2 is the unactuated part.
The system (1) is uniformly asymptotically stable to
qe,under the following hybrid control v, if there exists
constants k1, k2, k3, k4, C, D and a positive real num-
ber T � 1, such that A is nonsingular and H has all its
eigenvalues within the unit circle. Here, T represents
the switching time for the discrete control u(k).

v = �M(q)[k1(q1 � qe1) + k2(q2 � qe2)

+k3 _q1 + k4 _q2 + u(k)]

+ �C(q; _q) + �e(q)

u(k + 1) = Cu(k) +D

2
664

q1 � qe1
q2 � qe2

_q1
_q2

3
775

�M(q) = M11(q)�M12(q)M
�1
22 (q)M21(q)

�C(q; _q) = C11(q; _q) _q1 + C12(q; _q) _q2

�M12(q)M
�1
22 (q)[C21(q; _q) _q1

�C22(q; _q) _q2]

�e(q) = e1(q)�M12(q)M
�1
22 (q)e2(q)

H =

�
eAT A�1(eAT � I)B
D C

�

A =

2
664

0 0 Im�m 0
0 0 0 I(n�m)�(n�m)

k1 k2 k3 k4
A41 A42 A43 A44

3
775

B =

2
664

0
0

Im�m
�M�1

22 (qe)M21(qe)

3
775

A41 = �M�1
22 (qe)

�
M21(qe)k1 +

@e2(q1; q2)

@q1
jq=qe

�

A42 = �M�1
22 (qe)

�
M21(qe)k2 +

@e2(q1; q2)

@q2
jq=qe

�

A43 = �M�1
22 (qe) [M21(qe)k3 + c21(qe)]

A44 = �M�1
22 (qe) [M21(qe)k4 + c22(qe)]

All the parameters are de�ned consistent with equa-
tion (1). For example, M11;M12;M21M22 are corre-
sponding to the inertia matrix. One may use MAPLE
or MATLAB to conduct the computation, and design
the hybrid control parameters for asymptotically sta-
bilizing the system to the equilibrium state.
� For Model One (refer to (2)), we choose

k1 = 2884:2; k2 = 2192:0; k3 = 479:5

k4 = 282:9; d1 = 0:2; d2 = 0:3

d3 = 0:1; d4 = 0:2; c = 0:4; T = 0:1

� For Model Two (refer to (5)), we choose

k1 = 3224:5; k2 = 2463:0; k3 = 547:9

k4 = 331:7; d1 = 0:2; d2 = 0:3

d3 = 0:1; d4 = 0:2 c = 0:4; T = 0:1

The reader may verify these parameters satisfy all the
above conditions.

4 Implementation Results for

the New Hybrid Control
We implemented the hybrid control algorithm for both
Model One and Model Two. Some external distur-
bances were also added randomly by lightly hitting
the links using a metal stick to test the robustness of
the algorithm. Trajectories for both link one and link
two are given for comparison.

Control Based on Model One: The following
cases have been performed using hybrid control for
Model One(as supplied by the manufacturer).
� Without disturbances: Figure 3 a and b show the
positions and position errors of the two links.
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Figure 3: Without Disturbances

� With randomly added quick disturbances: Fig-
ure 4 shows the positions of the two links.
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Figure 4: Randomly Added Quick Disturbances

� With randomly added slow disturbances for visu-
ally estimating the region of attraction: Figure 5
shows the positions of the two links.
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Figure 5: Randomly Added Slow Disturbances

Control Based on Model Two: Figures 6 a and b
show the positions and position errors of the two links
implementing hybrid control for Model Two.

5 Implementation Results for

the Controller Supplied by

the Manufacturer

The manufacturer [1] supplied controllers that use par-
tial feedback linearization and nonlinear zero dynam-
ics for swing up, and Linear Quadratic Optimal Con-
trol Theory to balance the Pendubot at the open loop
unstable equilibrium q1 = �

2
and q2 = 0. Since the

e�ect of friction in the motor brushes and bearings
at the �rst joint and in the bearings at the second
joint generally result in limit cycle behavior, the con-
troller supplied by the manufacturer also includes a
small dither signal that reduces the amplitude of the
limit cycle. This reduction is called the friction com-
pensation technique.

The Figures 7 a and b show positions and position
errors of link one and link two.
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Figure 6: Varied Parameters Model
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Figure 7: Manufacturer's Controller

6 Analysis and Comparison of

the Experimental Results
From studying the above experimental results, we have
come to the following conclusions.
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� Implementation results show that the hybrid con-
troller developed from [5] works very well. It
shows a small transient shortly after the system
is switched to hybrid control.

� Figure 4 shows that the hybrid controller responds
very quickly and robustly, even to large uncertain
disturbances.

� Figure 5 shows that the region of attraction is
quite large for hybrid control. Slow uncertain dis-
turbances were applied for estimating the region
of attraction, which was found to be 72 degrees
centered around the equilibrium state.

� The hybrid control is very robust with respect
to the model variation. Figure 6 shows a some-
what surprising result: the hybrid control still
works very well for large variations of the dy-
namic model. However, the manufacturer con-
troller does not perform very well under these con-
ditions. Our swing up controller can be switched
to the hybrid controller much faster than the con-
troller supplied by the manufacturer.

� Comparison of Figure 3 with Figure 7 shows that
the hybrid controller works better than the con-
troller supplied by the manufacturer. For the
hybrid controller, both position and velocity er-
rors are signi�cantly smaller than that of the con-
troller supplied by the manufacturer. Also, the
response time is much faster than that of the con-
troller supplied by the manufacturer. Once our
controller switches to hybrid control, it quickly
reaches steady state.

� The Pendubot remains a very special case among
under-actuated mechanical systems that can use
Linear Quadratic Optimal Theory for achieving
smooth control. For a large class of under-
actuated mechanical systems, it is impossible to
use smooth feedback to asymptotically stabilize
the system around the equilibrium state. For
this reason, we developed the hybrid control tech-
nique, which can be used for designing a hybrid
controller for a large class of under-actuated me-
chanical systems, especially where smooth feed-
back cannot be used to asymptotically stabilize
the equilibrium state.

� We should note that we did not consider any tech-
nique for friction compensation in our hybrid con-
trol. Even though friction is very large and asym-
metric for the Pendubot, the hybrid controller still
outperforms the controller supplied by the manu-
facturer.

7 Conclusions
Experimental studies for control of nonholonomic sys-
tems have signi�cant meanings for control of underac-
tuated mechanical systems. The Pendubot, an under-
actuated mechanical system that shows second order
nonholonomic properties, is an ideal test bed for this
purpose.
This paper shows the new integrability conditions

and hybrid control theorems for control of the Pen-
dubot are a valuable approach for both theoretical and
experimental study of control of second order nonholo-
nomic systems.
Gravity terms make the Pendubot a special case

for second order nonholonomic systems. If there were
no gravity terms, it could not be feedback stabilized
using smooth control, and the controller supplied by
the manufacturer could not be used. The case for the
omission of gravity terms can be easily found for air-
planes, space craft, underwater manipulators,and un-
derwater robotic vehicles and vessels. In such con-
ditions, our hybrid control can be used. However, a
practical implementation remains to be demonstrated.
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