
 

ME340: Lab Manual 7    
Double Arm Pendulum, Lagrange’s Equations, and Linearization 
 
PRINT, STAPLE, and READ all materials concerning Lab 7.  Printing lab materials in lab is not 
allowed.  A stapler may not be available in lab.  Unstapled material will not be accepted. 
 
Introduction   
 
Linear equations have a very specific form.  This form makes linear systems relatively simple to 
use as models, analyze, and describe in state space (matrix) form.  However, many mechanical 
systems are inherently non-linear.  In order to make it possible to apply numerous linear analysis 
methods to non-linear systems, we must exercise an approximation process of linearizing non-
linear system equations.   
 
This lab will demonstrate the significance of linearization techniques and investigate the 
accuracy and limit of such approximation techniques on an actual double pendulum system.  The 
main purpose of this lab is to acquaint you with the main methods of analyzing non-linear 
dynamical systems: non-linear numerical simulation and analytical linear analysis via a 
linearized model.  
 
 
A Simple Introduction to Linearization  
 
An example of linearization is the small angle approximation, sin( )θ θ≈  for small θ .  In this 
case, sin( )θ  is linearized about the point 0θ = .  Figure 1 shows this approximation. 
 
Linearization produces a linear equation from the non-linear equation.  This linear equation will 
have the form 

 
 y m bθ= +  (7.1) 
 
The linear equation will be tangent to the function at the point of linearization (in this case zero).   
For the small angle approximation, ( )
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the linearization only holds for values close to the point of linearization.   
 
 
 
 
 
 
 
 
 
 
 
 
 

sin( )y θ=
y θ=y

θ

Figure 1: A sine wave and its linearization 



Linearizing Functions of  Multiple Variables 
 
Suppose we wish to linearize a function of the form 1( ,.., )mf x x  where 1,.., mx x  are the m 
variables of the function f .  From the previous example, a linearized equation only holds for 
values close to specific points called operating points.  Define the operating points of the 
function as 1,.., mx x .  Using Taylor series expansion of f about the operating points gives 
 

( ) ( )
1 1

Summation 1 Summation 2
    High

2
2

1 1 2
1 1( ,.., ) ( ,.., )

Linear Terms  (KEEP!)

1( ,.., ) ( ,.., ) . . .
2!

m m

m m

m m k k k k
k kk kx x x x

f ff x x f x x x x x x H O T
x x= =

   ∂ ∂   = + − + − +   ∂ ∂      
∑ ∑

64444744448 6444447444448

14444444244444443

er
Summations

Non-Linear Terms  (DISCARD!)

678

14444444244444443

 (7.2) 

 
Don’t worry; it’s not as complicated as it looks.  When using Taylor series, a linear 
approximation assumes that the non-linear summation terms are small about the operating point 
and can be neglected.  The series reduces to the linear approximation  
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This is simply a “fill-in-the-blank” answer to linearization; solve for the differential and then 
evaluate at the operating point.  Realize that the linearized approximation may not be a good 
approximation near the operating point.  The approximation accuracy depends on the function 
shape and the range of values that the linearized equation needs to approximate. 
 
 
Pendubot Model 
 
The Pendubot is a double pendulum found at the College of Engineering Control Systems 
Laboratory.  It is used for educational purposes in several controls courses.  The Pendubot 
consists of two rigid aluminum links.  There are optical encoders at each of the joints of the 
Pendubot and the whole system is 
actuated at the first link’s origin.  The 
system is controlled via Matlab 
commands.  These will be introduced 
as needed. A simplified representation 
of the Pendubot is shown in Figure 2. 
 
You will not be using the actuator in 
this lab, but a demonstration of what 
can be done with simple controls will 
use both the position encoders and the 
actuator.   
 
 
Pendubot’s Non-Linear Equations 

Figure 2: The double pendulum system 



of Motion  
 
Lagrange’s equations give the most convenient method for derivation of the equations of motion. 
After considerable application of simple calculus and algebraic manipulation, the two equations 
of motion for the system are 
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Note that Pre-Lab 7 asks for a derivation of these equations.  They are given here as a checkpoint 
for your work.  To simplify Equations (7.4), define the following constants 
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and rewrite the equations of motion as 
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Linearizing the Equations of Motion 
 
Before proceeding with the linearization of the non-linear pendulum model, we must choose an 
equilibrium point (our operating point) about which to linearize.  If a system is at an equilibrium 
point, it will remain at that point unless an outside force acts upon the system.  One obvious 
equilibrium point is the "down-down" position  (i.e. 1 2 0θ θ= = ).  The Pendubot has three other 
equilibrium points. 
 
The non-linear terms of Equation (7.6) are 
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Linearizing Equations (7.7) with Equation (7.3) and replacing the respective terms in Equations 
(7.6) gives the following linearized equations of motion 
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Now, the equations can be conveniently put into 2nd-order matrix form as 
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System Identification 
 
After extensive efforts at plant identification, the following equivalent values have been 
experimentally determined: 
   

1 2 1 20.1508m 0.1683m 0.4373kg 0.1615kgL L m m= = = =  
 
 
Explanation of the Simulink Model 
 
The non-linear Simulink model is provided for this lab.  The Simulink model is shown in Figure 
3.  This simulation file will still need to be linearized in lab.  To do this, you will need to know 
and understand the structure of the simulation file.   
 
Recall that the non-linear equations of motion are 
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Putting this into matrix form gives  
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Solving for 1M −  with 1 adj 

det
M

MM − = gives       (adj M stand for adjoint of matrix M) 
 

 
( )

( )
2 3 2 11

3 2 1 1

cos1
cosdet( )

p p
M

p pM
θ θ

θ θ
− − − 
=  − − 

 (7.12) 

 
Pre-multiplying Equation (7.11) by 1M −  gives a solution for the highest derivative 
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This equation can be rewritten compactly as 
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From Equations (7.13) and (7.14), the Simulink block diagram can be created.  Follow the 
description below.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Description of Simulation Loop  

1. Begin with 1θ&& and 2θ&& , represented by the indicated lines. 

2. Integrate 1θ&& and 2θ&& twice to obtain 1 2 1 2, , ,  and θ θ θ θ& & .  These will be used to calculate the non-linear terms.  
3. Mux the data into one line.  This mux simply represents 4 data lines as 1 line. 
4. Five function blocks to calculate the five unique non-linear terms of Equation (7.14).  For example, the 

bottom-most function block labeled q2 calculates the term ( )2

2 1 2 1 3 1 2 1 5 2( , , ) sin sinq p p gθ θ θ θ θ θ θ= − − −& & . 
5. Mux the five calculated values into a single line and then feed them back to close the loop. 
6. These are functions that do the point-by-point multiplication of the non-linear terms in Equation (7.14) to 

solve for 1θ&& and 2θ&& . 
7. Outputs the time vector to the Matlab workspace for plotting.  
8. Output 1 2 1 2, , ,  and θ θ θ θ& & to the workspace for plotting. 
9. Animation function that will show the motion of the pendulum during simulation. 

Figure 3: Nonlinear Simulink model. 

21 

3

4

5

6 

7 
8

9 



Experiment I:  Linearizing the Non-Linear Simulink Model  
 
1. Open the non-linear Simulink model.  The file is located in f:\labs\me340\pendubot\ and 

it is called pendubot.mdl.  Start Simulink and open this file.  The file should resemble 
Figure 3.   

2. Re-save pendubot.mdl as nonlinear.mdl in your folder on the local drive.  
3. Then, re-save pendubot.mdl as linear.mdl in your folder on the local drive. 
4. Now we will linearize the nonlinear model.  In linear.mdl, change the appropriate blocks 

to linearize the equations (Minv11, Minv12, Minv22, q1(t), q2(t), f1, f2). 
5. Rename the variables in the To Workspace blocks as linth1 (linth1 stands for linearized 

theta1), linth2, linth1dot, and linth2dot by double clicking on the blocks.  Change the 
time output in the To Workspace time block to lintime, (stands for linear model time).  
Save your block diagram. 

6. Calculate the previously defined p parameters using the numerical values for L and m 
above. At the Matlab prompt, enter the values of the p parameters.  For example, for p1:  

 
>> p1=0.0136; 
 

7. Do the same for the g variable. 
8. At this point, the block diagrams are ready to run.  Give the same initial condition, 

1 0.1θ = , in both the non-linear and linear block diagrams and run them both.  Plot the 
results with the following command and compare the dynamics.   

 
>> plot(lintime,linth1,’-‘,nlintime,nlinth1,’--’) 
>> legend(‘Theta 1, Lin. Sys.’,’Theta 1, Nonlin. Sys.’,0)  

 
There is no need to print this plot; the plot is simply to verify that your linearization is 
correct.  The resulting plots of the linear and non-linear system response should be very 
similar (overlapping?).  If the responses are obviously different, you may have done 
something wrong during the linearization of the Simulink model.  (Try again). 

 
 
Experiment II:  Data Collection & Simulink Model Comparison 
 
The Pendubot is an expensive piece of precision equipment.  Please do not throw the arm wildly 
during experimentation. 
 
In this section, the actual dynamics of the Pendubot will be recorded for two different initial 
conditions (one large IC and the one small IC).  The initial conditions that you give the Pendubot 
will be determined exactly, and they will be used as the initial conditions for the non-linear and 
linear Simulink models.  After running the Simulink models, you will evaluate the ability of the 
mathematical model to reproduce the actual motion of the Pendubot. 
 
• actth1, the angle of the first linkage as a function of time, (which arbitrarily stands for actual 

theta #1) will be recorded by Matlab commands.  Have your TA verify that the Pendubot is 
ready to record data. 

• The first set of data to be collected is for small initial displacements of 1θ  (about 20 degrees) 
with no displacement for 2θ  (the second link will hang vertically at the start of data 



collection). The following command will start the data collection routine.  Follow the on-
screen instructions.  Note:  do not hold the Pendubot by the encoder when displacing 1θ . 

 
>>[acttime,actth1,a,b,c,d]=pend_collect(zeros(1000,1)); 

 
• Now verify the measurement by plotting the experimental data   
 

 >>plot(acttime,actth1);               (do not print this plot). 
 
• Zoom in on the plot to determine the exact initial conditions (positions) for your 

experimental data.  Note that initial velocities are zero.  Also record the time at which the 
Pendubot was dropped.  This will be referred to as the time shift.   

• Run the linear and non-linear Simulink simulations using the initial condition for 1θ  that you 
just determined.   

• You may want to create an m-file for the following.  Do the following to plot your results.  
Title and label your plots accordingly.  The subplot(2,2,x) command simply places four 
plots on one sheet of paper. 

 
%CREATE A NEW FIGURE 

figure(43) 
%PLOT THE EXPERIMENTAL RESPONSE 

subplot(2,2,1) 
   plot(acttime,acth1) 

%!!add your xlabel, ylabel, and title here!! 
 %PLOT THE EXP. DATA WITH THE NON-LINEAR SIM. 

subplot(2,2,2) 
plot(acttime,actth1,’-‘,nlintime+timeshift,nlinth1,’--') 
legend(‘Actual \theta_1’,’Nonlinear Sim. \theta_1’,0) 
%!!add your xlabel, ylabel, and title here!! 

 %PLOT THE EXP. DATA WITH THE LINEAR SIM. 
subplot(2,2,4) 
plot(acttime,actth1,’-‘,lintime+timeshift,linth1,’- -‘) 
legend(‘Actual  \theta_1’,’Linear Sim. \theta_1’,0) 
%!!add your xlabel, ylabel, and title here!! 

 %PLOT THE NON-LINEAR AND LINEAR SIMULATIONS TOGETHER 
subplot(2,2,3) 
plot(nlintime,nlinth1,’-‘,lintime,linth1,’- -‘) 
legend(‘Nonlinear Simulation’,’Linear Simulation’,0); 
%!!add your xlabel, ylabel, and title here!! 

 %CHANGE THE PAPER ORIENTATION FOR PRINTING 
orient landscape 

 
• The first plot above is simply the data collected in the experiment.  The next two plots 

compare the actual dynamics to the linear and nonlinear simulations.  The fourth plot 
compares the linear and nonlinear simulations.  Print this figure. 

• Do the above steps of Experiment II again for a larger initial condition.  1θ  should be less 
than 90 degrees, but larger than that used in the first experiment.   A good target is 60 to 70 
degrees for 1θ .  Recall that 2θ  remains at zero.   


