Video Coding Standards: Up to H.264

Jing Hu and J. D. Gibson

Joint(ITU+ISO) Photographic Experts Group (JPEG)

• JPEG targets:

8 bits/pixel monochrome images

0.083 bits/pixel as 0.25 0.75 "recognizable" "useful" "excellent" "indistinguishable"

Color treatments:

Red Green Blue Luminance (Y) Color difference B-Y (C_B) Color difference R-Y (C_R)

2.25

Two modes: 4:2:2 4:2:0

- JPEG coder
 - 8×8 DCT (why DCT?)
 - Quantization (Two tables by Lohscheller 1984)
 - Zig-zag scanning and run-level description
 - Entropy coding (Huffman and arithmetic coding)
- Motion JPEG (Video coded as sequences of JPEG images)

MPEG-1 = JPEG + Motion Prediction + Rate Control

- Early motivation: to encode motion video at 1.5Mbits/s for transport over T1 data circuits and for replay from CD-ROM
- Defines the decoder but not the encoder
- Frames (pictures)
 - Intra-coded using JPEG
 - Inter-coded using (interpolated) motion estimation & compensation and JPEG for the residules
 Predicted and Bi-directional
- MacroBlocks (MBs)
 - 16×16 pixels block
- Rate control
 - buffer at each end
 - Test Model 5 (TM5)

- → forward prediction of B-frames

$\mathbf{MPEG-2} = \mathbf{MPEG-1} +$

- Improvments
 - Color space: could support 4:2:2 and 4:4:4 coding
 - Quantization: could have 9- or 10- bit precision for DC coefficients
 - <u>Concealment motion vectors</u>: used when an intra-MB is lost
 - Pan and Scan: supports display of different aspect ratios, e.g., 16:9
- Profiles and levels
 - <u>Profiles</u>: define the tools or syntactical elements
 - <u>Levels</u>: define the permissible ranges of parameters
- Interlace tools
- Scalable coding profiles
- System layer: define two bit stream constructs
 - Program stream (PS): modeled on MPEG-1 (backward compatibility)
 - <u>Transport stream (TS)</u>: more robust, does not need a common time base, designed for use in error-prone environment.

MPEG-2 – Interlace Tools

- <u>Interlaced Scanning</u>: Image flicker is less apparent because the image is painted twice as many times as what is in non-interlaced scanning.
- Frame Pictures and Field Pictures
 - two fields are processed sequentially or not
- Frame DCT and Field DCT
 - Field pictures usually use field DCT
 - Frame pictures use field DCT when there is obvious vertical motion
- Frame Prediction and Field Prediction

MPEG – Scalable Coding (SC)

- Non-scalable coding
 - To optimize video quality at a given bit rate.
- Base and enhancement layer SC
 - To optimize video quality at two given bit rates.
 - SNR SC (different quantization accuracy)
 - Temporal SC (different frame rates)
 - Spatial SC (different spatial resolution)
- Fine granularity scalability (FGS)
 - To optimize the video quality over a given bit rate range
 - Also has base layer and enhancement layer
 - Enhancement layer uses bit-plane coding
 - <u>Bit-plane coding</u> considers each quantized DCT coefficient as a binary integer of several bits instead of a decimal integer of a certain value
 - Frequency weighting and selective enhancement

MPEG-4 = MPEG-2+Objects+Other Enhancements

- Objects (optional)
 - Video (texture+shape), image, audio, speech, text, etc.
 - Encoded using different techniques
 - Transmitted independently
 - Composited at the decoder using Blnary Format for Scenes (BIFS)
- Improvements in MPEG-4 version2
 - Global motion compensation (GMC)
 - Quarter pixel motion compensation
 - Shape-adaptive DCT
- Why is MPEG-4 not a success as MPEG-2?
 - Not substantially better than MPEG-2
 - Suffers from its sheer size and flexibility
 - Issue of licensing

Advanced Video Coding/ ITU-T Recommendation H.264/ ISO/IEC MPEG-4 (Part 10)

- H.264 structure
 - Video coding layer (VCL)
 - Network abstraction layer (NAL)
- Possible applications of H.264
 - <u>Conversational services</u> operated below 1Mbps with low latency.
 - ISDN-based H.320
 - H.324/M in circuit-switched channels
 - H.323

- Entertainment services operated between 1-8+ Mbps with moderate latency such as 0.5-2s in modified MPEG-2/H.222.0 systems.
 - Broadcast via satellite, cable, terrestrial or DSL
 - DVD for standard and high-definition video
 - Video-on-demand via various channels
- □ <u>Streaming services</u> operated at <u>50-1500kbps</u> with 2s or more of latency.

Intra-Coded Macroblocks

	H.264	MPEG-1/2/4, H.261/3
Prediction in space domain	 Spatial prediction Encode the prediction modes (Use predictive coding if 4x4 modes are used) 	No spatial prediction
Transform	Integer transform of residue	8x8 Discrete Cosine Transform (DCT) for pixel values
Quantization	Quantization including scaling	Quantization
Prediction in frequency domain	No coefficient prediction	 Coefficient prediction (for DC values in MPEG-2 and AC values in the first row and column in MPEG-4)

Spatial Prediction for Intra-Coded MBs

chroma

- 8x8:

- 4x4: 9 modes

- 16x16: 4 modes

4modes

 The same prediction mode is always applied to both chroma blocks

Inter-Coded Macroblocks

	H.264	MPEG-1/2/4, H.261/3
References	 Permits up to 15 (2 mostly used) reference pictures Bi-predictive B-slices A P-slice may reference a picture that has B-slices Supports explicit weighting 	 A P-slice references only one I-picture Bi-directional B-slices Only permit (a+b)/2 type
	coefficients and (a+b)/2 type	prediction weighting
Block Sizes	 Tree-structured (16x16 → 16x8, 8x16, 8x8 → 8x4, 4x8, 4x4) 	Either 16x16 or 8x8
Motion Estimation	 half or ¼-pixel accuracy 6-point interpolation for half-pixel and 2-point linear interpolation for ¼-pixel 	 MPEG2 permits half-pixel accuracy and MPEG4 permits ¼-pixel accuracy 2-point linear interpolation

Transform and Quantization – Type 3 (2)

52 quantization stepsizes (Qstep) indexed by quantization parameters (QP)

QP	0	1	2	3	4	5	6	7	8	9	10	11	12	
QStep	0.625	0.6875	0.8125	0.875	1	1.125	1.25	1.375	1.625	1.75	2	2.25	2.5	
QP		18		24		- 30		- 36		42		48		51
QStep		5		10		20		40		80		160		224

Quantization

Integer arithmetic

 $sign(Z_{ii}) = sign(W_{ii})$

 $|Z_{ij}| = (|W_{ij}|.MF + f) \gg qbits$ where f=2^{qbits}/3 for intra MBs and 2^{qbits}/6 for inter MBs to control the quantization width near the origin (the "dead zone")

- The advantages of the new transform and quantization scheme:
 - Integer transform avoids the inverse-transform mismatch.
 - Smaller blocksize (4*4) leads to a significant reduction in ringing artifacts.
 - No multiplication involved. Requires only 16-bit arithmetic.

Entropy Coding

Parameters to be coded	entropy_coding_mode=0	entropy_coding_mode=1		
Macroblock type (Intra/Inter)				
Coded block pattern	Exponential Golomb codes (Exp Golomb)	Context-based Adaptive		
Quantizer parameter	Variable Length Coding			
Reference frame index		Binary Arithmetic Coding (CABAC)		
Motion vector				
Residual data	Context-adaptive variable length coding (CAVLC)			

Deblocking Filters

 A boundary-strength (BS) parameter is assigned to every 4×4 block

Block modes and conditions	Boundary- Strength parameter (BS)
One of the blocks is intra-coded and the edge is a MB edge	4
One of the blocks is intra-coded	3
One of the blocks has coded residuals	2
Difference of block motion ≥ one luma sample distance	1
Motion compensation from different reference frames	1
Else	0

BS = 0 → No filtering
 BS = 1-3 → Slight filtering

- $BS = 4 \implies$ Strong filtering
- Filters only when
 - □ |P₀-Q₀|< α

P3 P2 P1 P0 Q0 Q1 Q2 Q3

- <u>Thresholds α and β</u> depend on the <u>average quantization</u> <u>parameter (QP)</u>
- The deblocking filtering accounts for 1/3 of the computational complexity of a decoder.

Contributions of the VCL Tools

Spatial Prediction for Intra-coded Macroblocks	Saves 6-9% bits		
Temporal Prediction	Saves around 50% bits		
Transforms	PSNR less than 0.02dB		
Logarithmic Quantization	A change in step size by 12% also saves 12% bits		
CAVLC	Saves 5-8% bits		
CABAC	Saves 5-15% bits over CAVLC		
Picture-adaptive frame/field (PAFF) coding	Saves 16%-20% bits		
MB-adaptive frame/field (MBAFF) coding	Saves 14-16% bits over PAFF		
Deblocking Filter	Saves 5-10% bits		

H.264 Over IP

- Network Abstraction Layer Unit (NALU)
 - A byte stream of variable length
 - 1-byte header
 - NALU type (T)

Т

- NALU importance (R)
- Error indication (F) R

RTP packetization

- Simple packetization
 - One NALU in one RTP packet

F

- NALU header as RTP header
- NALU fragmentation
- NALU aggregation

OSI/RM	Protocols and specifi- cations for H.264		
Application Layer	RTP (Real-Time Transport Protocol)		
Presentation Layer	<u>Header size</u> : IP/UDP/RTP = 20+8+12=40 bytes		
	<u>Media-Unaware RTP payload</u> <u>specifications</u> to reduce the loss rates observed by the decoder.		
	Packet duplication/Packet based FEC/Audio redundancy coding		
Session Layer	 Control protocols: H.245, SIP (Session Initiation Protocol), SDP (Session Description Protocol), RTSP (Real-Time Streaming Protocol) 		
Transport Layer	UDP (User Datagram Protocol)		
Network Layer	IP: best effort service		
Data Link Layer			
Physical Layer			

Error-Resilience Tools

- Parameter sets
 - Sequence parameter set
 - Picture parameter set
- Flexible macroblock ordering (FMO)
 - Allows to assign MBs to slices in an order other than scan order
- Arbitrary slice ordering (ASO)
 - Improved end-to-end delay in real-time applications
- Redundant slices (RS)
 - Redundant representations are coded using different coding parameters

Slice Group #0

Slice Group #1

- Data partitioning with Unequal Error Protection (UEP)
- Feedback from decoder to encoder
 - Acknowledging correctly received slices (ACK)
 - Not acknowledging message (NAK)

Comparison of all the coding standards

	Applications	Bitrate	Coding efficien cy	Input format	complexity
MPEG-1	VCD	1.5 mbits/sec (1.15 mbits/sec for video data)		maximum frame size 4095x4095, maximum frame rate 60 frames/sec	
MPEG- 2/H.262	Digital TV standard by ASTC& DVB, DVD	5-10Mbits/s At first, the main focus of MPEG-4 was the encoding of video and audio at very low rates. In fact, the standard was explicitly optimized for three bit rate ranges: Below 64 kbits/sec, 64 to 384 kbits/sec, 384 kbits/s to 4 mbits/s.			For the same sample rate, and MPEG-2 encoder is about 50 percent more complex than MPEG- 1 encoder.
MPEG-4	multimedia and Web compression				
H.261/2/3/ 3++	Videoconferen cing and videotelephony	typically 384 kbit/s for videoconferencing and less than 128 kbits/s for videophone defined for ISDN bit rates of p x 64 bits/s where p = 1-30		CIF(360/352x288):progre ssive format, frame rate 20, 15, 10 or 7 Hz. QCIF: half the resolution of CIF.	
H.264		Video bit rate ranges 64kbps – 240mbps Compression gain of 1- 3dB over MPEG-4, 1-5dB over H.263, 3-6dB over MPEG-2	Twice of MPEG- 2	QCIF to 4kx2k	Decoder processing rate 250k- 250m 19 pixels.s

References

- Peter Symes, Digital Video Compression, McGraw-Hill, 2003.
- Joan L. Mitchell, MPEG Video Compression Standard, Chapman & Hall : International Thomson, 1996.
- William B. Pennebaker and Joan L. Mitchell, JPEG Still Image Data Compression Standard, Van Nostrand Reinhold, 1993.
- H.264/MPEG-4 Part 10 White Paper, <u>www.vcodex.com</u>
- IEEE Transactions on Circuits and Systems for Video Technology, Special Issue on the H.264/AVC Video Coding Standard, Vol. 13, No. 7, July 2003.
- B. Yan and K.W. Ng, A Survey on the Techniques for the Transport of MPEG-4 Video Over Wireless Networks, IEEE Transactions on Consumer Electronics, Vol. 48, No. 4, November 2002.
- MPEG Video Compression Technique, <u>http://rnvs.informatik.tu-chemnitz.de/~jan/MPEG/HTML/mpeg_tech.html</u>
- P. Hoyingcharoen and C. Schmidt, Overview of H.264/AVC, Signal Compression Lab, UCSB.

