ECE 242 Signal Compression

Introduction to Speech, Audio, Still Image, and Video Compression

Jerry D. Gibson

March 29, 2011

What is Compression?

• Represent a source in digital form with as few bits as possible while still providing an acceptable reproduction of the original

Synonyms for Data Compression

- Signal Compression
- Signal Coding
- Source Coding
- Source Coding with a Fidelity Criterion
- Lossy (Noisy) Source Coding
- Lossless (Noiseless) Source Coding
- Data Compaction

More Synonyms

- Redundancy Removal
- Bandwidth Compression

Components of a Compression Problem

• Source

• Rate

• Distortion Measure

• And Complexity

Rate, Bits, and Bandwidth

- Required network bandwidth set by transmitted bit rate
- Bit Rate in *bits/sec = bits/sample* x *samples/ sec*
- Sampling rate determined by source bandwidth

Major Steps in Data Compression

Speech and Audio Coding Bandwidths

- ≻Narrowband Speech 200 to 3400 Hz
- ≻ Wideband Speech 50 to 7000 Hz
- ≻ Wideband Audio 20 to 20,000 Hz
 - Number of channels
 - Stereo
 - Five channel surround

Approximate Bit Rates for Uncompressed Sources

Telephony	8000 samples/second \times 12 bits/sample =
(200–3400 Hz):	96 kbps
Wideband speech	16,000 samples/second $_{ imes}$ 14 bits/sample =
(50–7000 Hz):	224 kbps
Wideband audio	44,100 samples/second \times 2 channels \times
(20–20,000 Hz):	16 bits/sample $= 1.412$ Mbps
Images:	512×512 pixel color image \times 24 bits/pixel =
	6.3 Mbits/image
Video:	640 \times 480 pixel color image \times 24 bits/pixel \times
	30 images/second = 221 Mbps
HDTV:	1280×720 pixel color image \times 60 images/second
	\times 24 bits/pixel = 1.3 Gbps

Networks and Network Services

POTS	28.8-56 Kbits/s				
ISDN	64-128 Kbits/s				
ADSL	1.544-8.448 Mbits/s (downstream)				
	16-640 Kbits/s (upstream)				
VDSL	12.96-55.2 Mbits/s				
CATV	20-40 Mbits/s				
OC-N/STS-N	N x 51.84 Mbits/s				
Ethernet	10 Mbits/s				
Fast Ethernet	100 Mbits/s				
Gigabit Ethernet	1,000 Mbits/s				
FDDI	100 Mbits/s				
802.11(wireless)	1, 2, 5.5, 11, and 22 Mbits/s in 2.4 GHz band				
802.11 a(wireless)	6-54 Mbits/s in 5GHz band				

Reduce Source Bit Rates but Keep Quality

- Source (Speech, Audio, Still Images, Video) Compression
- What is Compression?
- Goal: Represent a source in digital form with as few bits as possible while still providing an acceptable reproduction of the original

Design Distortion Measures

- Mean Squared Error
 - Mathematically Tractable
 - Not Necessarily Perceptually Meaningful
 - Important for Initial Rankings
- Frequency-Weighted Squared Error
- Perceptually-Based Distortion Measures

THRESHOLD IN QUIET AND MASKING THRESHOLD

Code Excited Linear Prediction Input Preprocessing Speech LP Analysis Quantization Interpolation Fixed Codebook i LPC Info Ą $G_{c_1}^{i}$ ۷ Synthesis Filter Adaptive Codebook G_{p} LPC Info Pitch Analysis Perceptual Weighting Fixed CB Search Transmitted Parameter Gain Bitstream Encoding Quantization LPC Info

CELP Perceptual Weighting

Performance Evaluation

- Speech
 - Listening Tests, including
 - MOS
 - DRT
 - DAM
 - PESQ-MOS
- Audio—Listening tests—transparency
- Images and Video--Viewing

Applications of Speech Coding

- Wireline Telephony
- Videoconferencing
- Digital Cellular
- IP Telephony
- Voice Mail
- Speech Storage

Speech and Audio Coding Standards

➤ Narrowband speech

- GSM-AMR, G.729, G.723, G.728, IS-127(EVRC), IS-96(QCELP), IS-95(VSELP)
- G.711(PCM), G.721(ADPCM), G.726(ADPCM)
- LPC-10, MELP,...
- ➢ Wideband speech
 - G.722 (ADPCM)
 - G.722.1 (Transform)
 - AMR-WB (CELP)

➢ Wideband audio

- MPEG-1,2,4
- Philips PASC
- Sony ATRAC
- DOLBY AC-3

Generic Audio Coding Method [2]

Frequency Response of the MPEG Audio First Four Bands [1]

MPEG-1 Layer III Encoder [2]

Still Image and Video Compression Standards

- JPEG, 0.25-2.0 bits/pixel
- JPEG 2000
- MPEG-2, 4-10 Mbps
- VC-1
- AVC/H.264

JPEG Encoder and Decoder

Partitioning into 8 by 8 Blocks

2D-DCT Basis Functions ω. 888 90

March 29, 2011

Zig-Zag Coefficient Ordering

Sequential Lossy Encoding

Luminance Quantization Table

Luminance	quantization	table	
-----------	--------------	-------	--

16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

Images Reconstructed from the Same Coefficient Taken from Each Block

	- 216		\$ 3.4			13.4	27. (g) (d) (d)	ۍ م دينې
1	W.	1.5 \sim				State of		3.8
Б/З		$N_{\rm e} \chi^{\rm p}$		1997년 - 111 1973년 - 1				14
	51.6	1985				Star of	ALL H	1
1	$\mathbf{V}_{2,5}$	N.C. (100	4	10	1
			A Second			35. 2		1
			Ser.		941 M	a Tarist Martin	N. C.	a p
				8 K	22	3	5	2
1		1000	8.1.1	1.00	the word	-		A &
1.5		8.						54
		Se 10 30	A. 8.15	Er 2 in	Sec.	Sec. 15	and a second	್ ್ ಎಂಕಾದಿ
	19		103			100	Sec. 1	
19	033. 1	1. 2.10	\$ 8 C. C.	53	\$	4 j		
	1 10	1			Surgers ?	6 J.T.	100	1
100	in a -	4	 					
			1. A		2		132	$\frac{1}{2}$
	· · · :2 ³⁷ · · · · ·	1.2.2	1.18		18 A	S. 10	- 1 91	
	- 		Kana se		. N . V	1995 A	14 de 14 1912 e 14	
		1.58 J			17.2			··

March 29, 2011

JPEG2000 Features

- Superior low bit-rate performance—below 0.25 bpp for highly detailed gray-scale images
- Lossless and lossy compression—lossless compression in the course of progressive decoding
- Progressive transmission by increasing pixel accuracy or spatial resolution

JPEG2000 Features (cont'd)

- Region-of-interest (ROI) coding
- Random codestream access and processing
- Robustness to bit-errors
- Open architecture—a decoder is only required to implement the core tool set and a parser that understands the codestream
- Content-based description

JPEG2000 Features (cont'd)

 Continuous-tone and bi-level compression —compress and decompress images with various dynamic ranges (1 to 16 bit) for each color component

Basic Encoding Diagram

Basic Encoding Steps

- Pre-processing of the image
- The image is decomposed into components
- The image/components are decomposed into tiles
- Tiling refers to partitioning the image into rectangular non-overlapping blocks, called tiles, which are compressed independently as if they are independent images

Basic Encoding Steps (cont' d)

- A wavelet transform is applied on each tile
- Each tile is decomposed into different resolution levels
- The decomposition levels are made up of subbands of coefficients that describe the frequency characteristics of local areas of the tile-component
- The subbands of coefficients are quantized and collected into rectangular arrays of code blocks

Basic Encoding Steps (cont'd)

- The bit-planes of the coefficients in a codblock are entropy coded
- ROI's can be encoded in higher quality than the background
- Markers are added in the bitstream for error resilience
- The codestream has a main header that describes the original image and the various decomposition and coding styles

Three-Level 2-D Wavelet Transform

Subband Labeling

Assumed Relationship Between Quadtree Coefficients

The Scanning Order for Dominant Passes of the EZW Algorithm

Classical Video Coding

Gibson 44

H.264 Encoder

Video Codec Parameters and Performance for Different Videos

Video	sile	nt.cif	paris.cif		stefan.cif	
Typical application	video co	onference	news broadcast		sports broadcast	
QP	26	30	26	30	26	30
Avg psnr	36.69	34.22	36.59	33.45	36.69	33.47
Bit rate (kbps)	169.5	97.8	373.5	218.9	1396.8	404.6
I frame size (bytes)	13945	8826	19886	14390	30432	15978
Average of P frame size (bytes)	1272	725	2924	1683	11429	3230
Variance of P frame size (bytes)	412	254	322	219	1544	625

Key Functionalities for Lossy Compression

- Error Concealment
- Scalability
 - SNR
 - Spatial
 - Temporal
 - Bandwidth
- Multiple Descriptions

Scalable Coding

- Sometimes denoted as layered coding, embedded coding, or variable rate coding
- Scalable Coding consists of a core coder at the lowest bit rate plus one or more enhancement layers
- Quality improvement is achieved by sending only an incremental bit rate above the core layer
- Speech Scalable Coding: SNR scalability, Bandwidth scalability

The Successive Refinement Problem

Scalable Coding

Temporal, Spatial and SNR scalability

Multiple Descriptions Coding

