Homework No. 2

Due on April 14th

1. Use Eqs. (9.27) and (9.28) to verify the step points and output levels for the 4 level Gaussian quantizer in Table 9.6 of Sayood.

2. Do Problem 1 on page 270 of Sayood.

3. An exact closed form expression for the rate distortion function of a memoryless Gaussian source with zero mean and unit variance subject to the absolute value of the error fidelity criterion cannot be found. However, a lower bound can be developed. Plot the lower bound given by

$$R_L(D) = \frac{1}{2} \log \frac{\pi \sigma^2}{2eD^2}, \text{ for } 0 \le D \le \sqrt{\frac{\pi \sigma^2}{2e}}$$

4. Message $m_1(t)$ is sampled 8000 times/sec to yield the values 8, 291, 504, 172, -12, -210, -525, and -268. Message $m_2(t)$ is similarly sampled to produce 28, 127, 300, 492, 299, 131, 54, and 6. Encode these samples using the table on the next page and time-division multiplex the two sequences.

5. The 10 sample values taken from a zero mean, variance 4 Gaussian distribution given by -2, -1.45, -0.2, +0.15, +0.24, +0.68, +2.2, +2.9, +3.6, +3.9, +4.95 are to be quantized using a 16-level MMSE Gaussian quantizer and encoded using a folded binary code. What are the resulting binary sequence and output amplitudes?

6. The uniform and nonuniform quantization tables in Chapter 9 of Sayood are for unit variance inputs. Show that if $\sigma^2 > 1$ then we simply scale the quantizer step points and output levels by σ .

Input Amplitude Range:	Step Size:	Polarity Bit:	Quantization Segment Code:	Quantizer Step Code:	Output Value:
0-1	1	1	111	1111	0
1-3 3-5 :	2	1	111	1110 1101 	2 4 :
29-31				0000	30
31–35 : 91–95	4	1	110	1111 : 0000	33 : 93
95-103 : 215-223	8	1	101	1111 : 0000	99 : 219
223-239 : 463-479	16	1	100	1111 : 0000	231 : 471
479–511 : 959–991	32	1	011	1111 : 0000	495 : 975
991–1055 : 1951–2015	64	1	010	1111 : 0000	1023 : 1983
2015-2143 : 3935-4063	128	1	001	11111 : 0000	2079 : 3999
4063-4319 : 7903-8159	256	1	000	1111 : 0000	4191 : 8031

TABLE 9.6.1 Quantizer Characteristic and Code Assignment for D2, D3, and D4 Channel Bank Codecs^a

^a Positive inputs only; assumed symmetric about zero.

From J. D. Gibson, Principles of Digital and Analog Communications, 1993.