Homework No. 2 Solutions

1. Straightforward substitution.

2.

Problem 1. Leibnitz rule is given by

$$\frac{\delta}{\delta t} \int_{a(t)}^{b(t)} f(x,t) dx = \int_{a(t)}^{b(t)} \frac{\delta}{\delta t} f(x,t) dx + f(b(t),t) \frac{\delta}{\delta t} b(t) - f(a(t),t) \frac{\delta}{\delta t} a(t)$$

where a(t) and b(t) are monotonic functions of t.

The quantization noise power is given by:

$$\sigma_q^2 = 2 \sum_{i=1}^{\frac{M}{2}-1} \int_{(i-1)\Delta}^{i\Delta} \left(x - \frac{2i-1}{2} \Delta \right)^2 f_X(x) dx + 2 \int_{(\frac{M}{2}-1)\Delta}^{\infty} \left(x - \frac{M-1}{2} \Delta \right)^2 f_X(x) dx$$

Taking a derivative with respect to Δ and using Leibnitz rule we obtain:

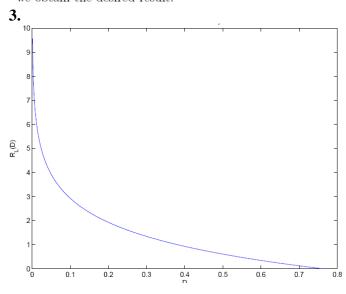
$$\frac{\delta}{\delta t} \sigma_q^2 = 2 \sum_{i=1}^{\frac{M}{2}-1} \left[2(-\frac{(2i-1)}{2}) \int_{(i-1)\Delta}^{i\Delta} \left(x - \frac{2i-1}{2} \Delta \right) f_X(x) dx + \frac{i\Delta^2}{4} f_X(i\Delta) - \frac{(i-1)\Delta^2}{4} f_X((i-1)\Delta) \right]$$

$$+ \left[2(-\frac{(M-1)}{2}) \int_{(\frac{M}{2}-1)\Delta}^{\infty} \left(x - \frac{M-1}{2} \Delta \right) f_X(x) dx - \frac{(\frac{M}{2}-1)\Delta^2}{4} f_X((\frac{M}{2}-1)\Delta) \right]$$

Setting this to zero and noticing that

$$\sum_{i=1}^{\frac{M}{2}-1} \left[\frac{i\Delta^2}{4} f_X(i\Delta) - \frac{(i-1)\Delta^2}{4} f_X((i-1)\Delta) \right] = \frac{(\frac{M}{2}-1)\Delta^2}{4} f_X((\frac{M}{2}-1)\Delta)$$

we obtain the desired result.



4

9.10-22. Encoding from Table 9.6-1 can be expedited by the following definitions.

Let $x \stackrel{\triangle}{=}$ magnitude of the sample to be encoded

 $x_L \stackrel{\Delta}{=}$ lowest value in the quantization segment input amplitude range

 $\Delta \stackrel{\Delta}{=}$ step size for the particular quantization segment of interest.

Then the quantizer step s in the particular segement is

$$s = \lceil \frac{x - x_L}{\Delta} \rceil = \frac{\text{least integer greater}}{\text{than } (x - x_L)/\Delta.}$$

Example:

$$x = 291, \ s = \lceil \frac{291 - 223}{16} \rceil = \lceil 4.25 \rceil = 5.$$

The 5th step has the code 1011. The TDMed binary sequence with m_1 first is:

5.

Input:	-2	-1.45	-0.2	0.15	0.24	0.68	2.2	2.9	3.6	3.9	4.95
Normalized Input:	-1	725	1	.075	.12	.34	1.1	1.45	1.8	1.95	2.475
Binary Sequence:	0011	0010	0000	1000	1000	1001	1011	1101	1101	1110	111
Output (normalized)	9424	6568	1284	.1284	.1284	.3881	.9424	1.618	1.618	2.069	2.733
Output:	-1.885	-1.314	2568	.2568	.2568	.7762	1.8848	3.236	3.236	4.138	5.466

6.

$$\frac{1.1}{\sqrt{g^{2}}} = \sum_{k=1}^{3} \int_{3k}^{3k+1} (3-w_{k})^{2} p_{2}(3) d3$$

$$\frac{\partial \sigma_{g^{2}}}{\partial w_{g^{2}}} = 0 \Rightarrow w_{g^{2}} = \frac{3i}{3i} \int_{30+1}^{30+1} f_{2}(3) d3$$

$$\frac{\partial \sigma_{g^{2}}}{\partial w_{g^{2}}} = 0 \Rightarrow w_{g^{2}} = \frac{3i}{3i} \int_{30+1}^{30+1} f_{2}(3) d3$$

and
$$\frac{30q^2}{33s'} = 0 \Rightarrow 3s' = \frac{uz' + uz' + 2}{2}$$
.

Working with uz' , make the Change of variables $x = \frac{2}{7} \frac{1}{5}$ so the numerator is $3s' + 1$ $3s' + 1 + 2 \frac{1}{7} \frac{1}$