Homework No. 4 Solutions

1.

Problem 4.

a)

$$H = \sum_{i=1}^{5} P(a_i) \log P(a_i) = 1.817684 \text{bits}$$

b) If we sort the probabilities in descending order we can see that the two letters with the lowest probabilities are a₂ and a₄. These will become the leaves on the lowest level of the binary tree. The parent node of these leaves will have a probability of 0.9. If we consider parent node as a letter in a reduced alphabet the it will be one of the two letters with the lowest probability: the other one being a₁. Continuing in this manner we get the binary tree shown in Figure 1. and the code is

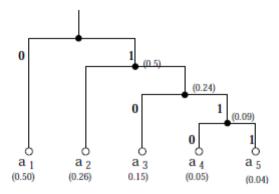


Figure 1: Huffman code for the five letter alphabet.

$$a_1$$
 110
 a_2 1111
 a_3 10
 a_4 1110
 a_5 0

c)

$$\bar{l} = 0.15 \times 3 + 0.04 \times 4 + 0.26 \times 2 + 0.05 \times 4 + 0.5 \times 1 = 1.83$$
bits/symbol

2. Correction: code for a_1 should be 001 and code for a_3 should be 000 Problem 5.

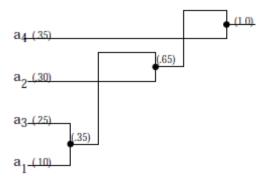


Figure 2: Huffman code for the four letter alphabet in Problem 5.

a) The Huffman code tree is shown in Figure 2. The code is

 a_1 011 a_2 01 a_3 010 a_4 1

The average length of the code is $0.1 \times 3 + 0.3 \times 2 + 0.25 \times 3 + 0.35 \times 1 = 2$ bits/symbol.

b) The Huffman code tree is shown in Figure 3. The code is

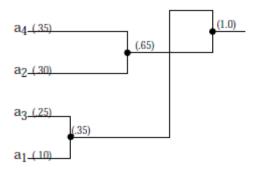


Figure 3: Minimum variance Huffman code for the four letter alphabet in Problem 5.

 a_1 01 a_2 11 a_3 00 a_4 10

The average length of the code is obviously 2 bits/symbol.

While the average length of the codeword is the same for both codes, that is they are both equally efficient in terms of rate. However, the second code has a variance of zero for the codelengths. This means that we would not have any problems with buffer control if we were using this code in a communication system. We cannot make the same assertion about the first code.

3.

Problem 10

Message $a_2a_1a_3a_2a_1a_2$ Transmitted binary sequence 1010001011
Received binary sequence 0010001011
Decoded sequence $a_4a_4a_2a_2$

Depending on how you count the errors five characters are received in error before the first correctly decoded character.

b) Message $a_2a_1a_3a_2a_1a_2$ Transmitted binary sequence 001011001000
Received binary sequence 101011001000
Decoded sequence $a_1a_1a_3a_2a_1a_2$ Only a single character is received in error.

Message a₂a₁a₃a₂a₁a₂

Transmitted binary sequence 1010001011

Received binary sequence 1000001011

Decoded sequence a₂a₃a₄a₂a₂

four characters are received in error before the first correct character.

For the minimum variance code the situation is different

 $\begin{array}{lll} \text{Message} & a_2a_1a_3a_2a_1a_2 \\ \text{Transmitted binary sequence} & 001011001000 \\ \text{Received binary sequence} & 000011001000 \\ \text{Decoded sequence} & a_2a_2a_3a_2a_1a_2 \end{array}$

Again, only a single character is received in error.

4.

Problem 13.

First iteration:

Letter	Probabilit
a_1	0.7
a_2	0.2
a_3	0.1

Second iteration:

Letter	Probability
a_2	0.2
a_3	0.1
a_1a_1	0.49
$a_{1}a_{2}$	0.14
$a_{1}a_{3}$	0.07

Final iteration:

Letter	Code
a_2	000
a_3	001
a_1a_2	010
$a_{1}a_{3}$	011
$a_{1}a_{1}a_{1}$	100
$a_{1}a_{1}a_{2}$	101
$a_1 a_1 a_3$	110