Midterm Exam Solutions

1. (a) From class, $D \geq \frac{1}{12} e^{-2(H(Y)-h(X))}$ where $h(X)=\log _{2} e \sqrt{2}=1.943$ and $H(Y)=3$, so $D \geq 0.01$ and $S N R \leq 20 \mathrm{~dB}$.
(b) $D(3)=\frac{e}{\pi} 2^{-6}=0.0135$ or $S N R=18.69 \mathrm{~dB}$.
2. (a) The output $S N R=10 \log _{10} \frac{\sigma^{2}}{D}$ where $D=\frac{x_{\max }^{2}}{3 N^{2}} \int_{-x_{\max }}^{x_{\max }} f_{X}(x)\left(\frac{d}{d x} G(x)\right)^{-2} d x$ and the pdf is Laplacian so $f_{X}(x)=\frac{1}{\sigma \sqrt{2}} e^{-\sqrt{2} \mid x / \sigma}$. Substitute $\frac{d}{d x} G(x)=\frac{m}{1-e^{-m}} e^{-m|x| / x_{\max }}$ and evaluate.
(b) $\Delta=\frac{2 x_{\max }}{N}\left(\frac{d}{d x} G(x)\right)^{-1}$ so find $\Delta_{\min }$ by letting $x \rightarrow 0$ and $\Delta_{\max }$ by letting $x \rightarrow x_{\max }$ so we get $\frac{\Delta_{\text {max }}}{\Delta_{\text {min }}}=e^{m}$
3. (a) For the first quantizer, we input $X, \hat{X}=Q_{1}(X)$ and $E(X-\hat{X})^{2}=E X^{2}-E \hat{X}^{2}$. For the second quantizer, the input is $U=X-\hat{X}$, so $\hat{U}=Q_{2}(U)$ and we have

$$
\begin{aligned}
& E(U-\hat{U})^{2}=E U^{2}-E \hat{U}^{2}=E X^{2}-E \hat{X}^{2}-E \hat{U}^{2} . \text { Overall, } \\
& E(X-\tilde{X})^{2}=E(X-\hat{X}-\hat{U})^{2}=E(U-\hat{U})^{2}
\end{aligned}
$$

(b) For optimal MMSE $Q_{2}, E(U-\hat{U}) \hat{U}=0 \Rightarrow E U \hat{U}=E \hat{U}^{2}$
4. See next page and following.
5. See next page and following.

$$
\begin{aligned}
& 4 . j D=E\left\{|x-y|^{r}\right\}=\int_{-\infty}^{\infty}|x-y|^{n} p(x) d x \\
& =\sum_{i=1}^{L} \int_{x_{i}}^{x_{i+1}}\left|x-y_{i}\right|^{n} \frac{1}{V} d x= \\
& \sum_{i=1}^{L}\left\{\int_{x_{i}}^{x_{i}}\left(y_{i}-x\right)^{n} \frac{1}{V} d x+\int_{y_{i}}\left(x-y_{i}\right)^{r} \frac{1}{v} d x\right\}
\end{aligned}
$$

(a) Necessary Conditiors: $\frac{\partial D}{\partial x_{j}}=0 ; j=2, \ldots, \angle$

$$
-\left(y_{j}-x_{j}\right)^{n} \frac{1}{V}+\left(x_{j}-y_{j}-1\right)^{n} \frac{1}{\nu}=0
$$

$$
\text { or } y_{j}-x_{j}=x_{j}-y_{j}=1 \Rightarrow x_{j}=\frac{y_{j}+y_{j}-1}{2}
$$

$$
\frac{\partial D}{\partial y_{j}{ }^{\prime}}=\left.0 \Rightarrow\left(y_{j}-x\right)^{n} \frac{1}{v}\right|_{x=y_{j}}+\int_{x_{j}}^{y_{j}} M\left(y_{j}-x\right)^{n-1} \frac{1}{v} d x
$$

$$
\left.+(-1)\left(x-y_{j}\right)^{n}\right) \frac{1}{v}+\int_{x=y_{j}}^{v i+1}(-1)\left(x-y_{j}\right)^{n-1} \frac{1}{v} d x=0
$$

$$
\therefore \int_{x_{j}}^{y_{j}}\left(y_{j}-x\right)^{n-1} d x=\int_{y_{j}^{\prime}}^{x_{j}+1}\left(x-y_{j}\right)^{n-1} d x
$$

$$
-\left.\frac{\left(y_{j}-x\right)^{2}}{n}\right|_{y_{j}}=\left.\frac{\left(x-y_{j}\right)^{n}}{n}\right|_{y_{j}} ^{x_{j}+1}
$$

Thus,

$$
\begin{aligned}
& \text { Thus, }\left(y_{j}-x_{j}\right)^{r}=\left(x_{j}+y_{j}\right)^{2} \\
& \therefore y_{j}-x_{j}=x_{j}+y_{j} \Rightarrow y_{j}=\frac{x_{j}+x_{j}}{2} \\
& x_{j}=\frac{1}{2}\left\{\frac{x_{j}+x_{j}}{2}+\frac{x_{j}+x_{j}-1}{2}\right\}=\frac{1}{2}\left\{\frac{x_{j}+1}{2}+y_{j}+\frac{x_{j}+1}{2}\right\}
\end{aligned}
$$

or $x_{j}=\frac{x_{j}+1+x_{j}=1}{2}$
Amiclarly, $y_{j}=\frac{y_{y}+1+y_{j-1}}{2}$, so the quantize is UNIFORM for all $r \geqslant 1$.

$$
\begin{aligned}
& x_{1}=\frac{-V}{2}, k_{L+1}=\frac{V}{2}, x=\frac{-V}{2}+(j-1) \Delta, \\
& y_{j}=\frac{-V}{2}+\frac{\Delta}{2}+(j-1) \Delta, \Delta=\frac{V}{L} .
\end{aligned}
$$

(b) $D=\sum_{i=1}^{L} \int_{x_{i}}^{x_{i}+1}\left|x-y_{i}\right|^{\wedge} \frac{1}{V} d k=$

But $\Delta=V / L$ and $\angle=2^{R}$, so $\Delta=U 2^{-R}$ and $D=\frac{2 \cdot 2^{R}}{V} \cdot \frac{V^{n+1} 2^{-R(n+1)}}{2^{n+1}(n+1)}=\frac{V^{n}}{n+1} Z^{-n(R+1)}$
Not REQUESTED
The than nos lower bound for $c=1$ is

$$
\begin{aligned}
R & =h(x)-\log 2 e D=\log V-\log 2 e D \\
& =\log \frac{V}{2 e D} \text { or } D=\frac{V}{2 e} 2^{-R}
\end{aligned}
$$

Compare.

