Signal Compression (ECE 242) Gibson January 8, 2008 Handout #3

Homework No. 1

Due: January 15, 2008

Given two independent random variables X and Y, form Z=X+Y.
(a) If X and Y are Gaussian with means μ_X and μ_Y and variances σ²_X and σ²_Y, respectively, find the probability density function of Z.
(b) If X and Y are one-sided exponential random variables with parameter λ (see page 20 of Gersho and Gray), what is the pdf of Z?

2. A random variable *X* with alphabet $X = \{x_1, x_2, x_3\}$ has the probability mass function $p(x_1) = 0.7$, $p(x_2) = 0.15 = p(x_3)$. Calculate H(X). Compare H(X) to H(Y) for a random variable *Y* with three equally likely values.

3. Given a random variable *X*, uniformly distributed over $\left[-\Delta/2, \Delta/2\right]$, calculate the variance of *X*.

4. A continuous time, weakly stationary random process (see p. 31 of the text) has the autocorrelation function

$$R_{X}(\tau) = e^{-|\tau|} for - \infty < \tau < \infty$$

Find the power spectral density.

5. A first order discrete-time autoregressive (AR(1)) process is given by $x_k = \alpha x_{k-1} + w_k$, with $\alpha > 0$, where the weakly stationary sequence w_k is white and zero mean with variance σ_w^2 . Find the autocorrelation function of this AR(1) process.